相关习题
 0  263405  263413  263419  263423  263429  263431  263435  263441  263443  263449  263455  263459  263461  263465  263471  263473  263479  263483  263485  263489  263491  263495  263497  263499  263500  263501  263503  263504  263505  263507  263509  263513  263515  263519  263521  263525  263531  263533  263539  263543  263545  263549  263555  263561  263563  263569  263573  263575  263581  263585  263591  263599  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中, , ,点为棱的中点.

(1)证明: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.其中

(1)当时,求函数的单调区间;

(2)若对于任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=aln x (aR).

(1)a=1时,求f(x)x[1,+∞)内的最小值;

(2)f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> (nN*).

查看答案和解析>>

科目: 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 经计算估计这组数据的中位数;

(2)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,求这个芒果中恰有个在内的概率.

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目: 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

分类

积极参加

班级工作

不太主动参

加班级工作

总计

学习积极性高

18

7

25

学习积极性一般

6

19

25

总计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为的纸箱放入的小球编号为,定义吻合度误差为

(1) 写出吻合度误差的可能值集合;

(2) 假设等可能地为1,2,3,4的各种排列,求吻合度误差的分布列;

(3)某人连续进行了四轮“放球”,若都满足,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);

查看答案和解析>>

科目: 来源: 题型:

【题目】摩拜单车和小黄车等各种共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2.5小时收费2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为1小时以上且不超过2小时还车的概率分别为两人用车时间都不会超过3小时.

(Ⅰ)求甲乙两人所付的车费相同的概率;

)设甲乙两人所付的车费之和为随机变量的分布列及数学期望

查看答案和解析>>

科目: 来源: 题型:

【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .

(Ⅰ)写出的值,并用列举法写出集合;

(Ⅱ)用表示有限集合所含元素的个数,求的最小值;

(Ⅲ)有多少个集合对,满足,且?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若对于任意的为自然对数的底数),恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

参照附表,得到的正确结论是( )

A.有995%以上的把握认为爱好该项运动与性别无关

B.有995%以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

同步练习册答案