科目: 来源: 题型:
【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.某环保人士从当地某年的AQI记录数据中,随机抽取了15天的AQI数据,用如图所示的茎叶图记录.根据该统计数据,估计此地该年空气质量为优或良的天数约为__________.(该年为366天)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的普通方程为
,曲线
参数方程为
(
为参数);以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
,
.
(1)求
的参数方程和
的直角坐标方程;
(2)已知
是
上参数
对应的点,
为
上的点,求
中点
到直线
的距离取得最小值时,点
的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知离心率为2的双曲线
的一个焦点
到一条渐近线的距离为
.
(1)求双曲线
的方程;
(2)设
分别为
的左右顶点,
为
异于
一点,直线
与
分别交
轴于
两点,求证:以线段
为直径的圆
经过两个定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为
,市场占有率为
,得结果如下表:
年月 | 2018.10 | 2018.11 | 2018.12 | 2019.1 | 2019.2 | 2019.3 |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 11 | 13 | 16 | 15 | 20 | 21 |
(1)观察数据看出,可用线性回归模型拟合
与
的关系,请用相关系数加以说明(精确到0.001);
(2)求
关于
的线性回归方程,并预测该公司2019年4月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲、乙两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频率表如下:
![]()
经测算,平均每辆单车可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?
参考数据:
,
,
,![]()
回归方程
中斜率和截距的最小二乘法估计公式分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法:①若线性回归方程为
,则当变量
增加一个单位时,
一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程
必过点
;④抽签法属于简单随机抽样;其中错误的说法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,如图所示,已知椭圆
的左、右顶点分别为
,
,右焦点为
.设过点
的直线
,
与此椭圆分别交于点
,
,其中
,
,
.
![]()
(1)设动点
满足:
,求点
的轨迹;
(2)设
,
,求点
的坐标;
(3)设
,求证:直线
必过
轴上的一定点(其坐标与
无关),并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】计算机在数据处理时使用的是二进制,例如十进制数1,2,3,4的二进制数分别表示为1,10,11,100,二进制数…
化为十进制数的公式为…
,例如二进制数11等于十进制数
,又如二进制数101等于十进制数
,下图是某同学设计的将二进制数11111化为十进制数的程序框图,则判断框内应填入的条件是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】学校组织学生参加社会调查,某小组共有3名男同学,4名女同学,现从该小组中选出3名同学分别到甲乙丙三地进行社会调查,若选出的同学中男女均有,则不同的安排方法有( )
A. 30种B. 60种C. 180种D. 360种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com