科目: 来源: 题型:
【题目】为比较甲乙两地某月12时的气温状况,选取该月5天中12时的气温数据(单位:)制成如图所示的茎叶图,考虑以下结论:
①甲地该月12时的平均气温低于乙地该月12时的平均气温;
②甲地该月12时的平均气温高于乙地该月12时的平均气温;
③甲地该月12时的气温的标准差小于乙地该月12时的气温的标准差;
④甲地该月12时的气温的标准差大于乙地该月12时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目: 来源: 题型:
【题目】蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆的方程为,直线与圆交于,,直线与圆交于,.原点在圆内.
(1)求证:.
(2)设交轴于点,交轴于点.求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(且为常数).
(1)当时,讨论函数在的单调性;
(2)设可求导数,且它的导函数仍可求导数,则再次求导所得函数称为原函数的二阶函数,记为,利用二阶导函数可以判断一个函数的凹凸性.一个二阶可导的函数在区间上是凸函数的充要条件是这个函数在的二阶导函数非负.
若在不是凸函数,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若的顶点,,且的欧拉线的方程为.
(1)求外心(外接圆圆心)的坐标;
(2)求顶点的坐标.
(注:如果三个顶点坐标分别为,,,则重心的坐标是.)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的焦点为F,过抛物线上一点P作抛物线的切线交x轴于点D,交y轴于Q点,当时,.
(1)判断的形状,并求抛物线的方程;
(2)若两点在抛物线上,且满足,其中点,若抛物线上存在异于的点H,使得经过三点的圆和抛物线在点处有相同的切线,求点H的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度)..
(I)求道路BE的长度;
(Ⅱ)求道路AB,AE长度之和的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一般地,对于直线及直线外一点,我们有点到直线的距离公式为:”
(1)证明上述点到直线的距离公式
(2)设直线,试用上述公式求坐标原点到直线距离的最大值及取最大值时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com