相关习题
 0  264379  264387  264393  264397  264403  264405  264409  264415  264417  264423  264429  264433  264435  264439  264445  264447  264453  264457  264459  264463  264465  264469  264471  264473  264474  264475  264477  264478  264479  264481  264483  264487  264489  264493  264495  264499  264505  264507  264513  264517  264519  264523  264529  264535  264537  264543  264547  264549  264555  264559  264565  264573  266669 

科目: 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)求的单调区间;

(2)若对于任意,都有,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

合计

爱好

40

20

60

不爱好

20

30

50

合计

60

50

110

K2

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

参照附表,得到的正确结论是(

A.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别有关

B.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别无关

C.99%以上的把握认为爱好该项运动与性别有关

D.99%以上的把握认为爱好该项运动与性别无关

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求实数的值;

2)判断函数在区间上的单调性,并用函数单调性的定义证明;

3)求实数的取值范围,使得关于的方程分别为:

①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.

查看答案和解析>>

科目: 来源: 题型:

【题目】设等差数列的前项和为,且.数列的前项和为,满足

1)求数列的通项公式;

2)写出一个正整数,使得是数列的项;

3)设数列的通项公式为,问:是否存在正整数,使得成等差数列?若存在,请求出所有符合条件的有序整数对;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A40)、B10),动点M满足|AM|=2|BM|

1)求动点M的轨迹C的方程;

2)直线lx+y=4,点Nl,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】设定义在上的函数满足:对任意的,当时,都有.

(1)若,求实数的取值范围;

(2)若为周期函数,证明:是常值函数;

(3)若上满足:

①记),求数列的通项公式;② 求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数),数列满足,数列满足.

(1)求证:数列是等差数列;

(2)设数列满足),且中任意连续三项均能构成一个三角形的三边长,求的取值范围;

(3)设数列满足),求的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A40)、B10),动点M满足|AM|=2|BM|

1)求动点M的轨迹C的方程;

2)直线lx+y=4,点Nl,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点M到定点F1(2,0)F2(2,0)的距离之和为.

1)求动点M的轨迹C的方程;

2)设N(0,2),过点P(1,-2)作直线l,交曲线C于不同于N的两点AB,直线NANB的斜率分别为k1k2,求k1k2的值.

查看答案和解析>>

同步练习册答案