【题目】已知函数(),数列满足,,数列满足.
(1)求证:数列是等差数列;
(2)设数列满足(),且中任意连续三项均能构成一个三角形的三边长,求的取值范围;
(3)设数列满足(),求的前项和.
【答案】(1)见解析;(2);(3),.
【解析】
(1)等式两边同时减去1,得,从而2,由此能证明数列{}是以2为公差,1为首项的等差数列.
(2)由(1)可得数列{}的通项公式,得到{}递增,将问题转化为+>,解出即可.
(3)利用等差数列等比数列求和公式对n分奇偶分别求和.
(1)∵,
等式两边同时减去1,得,
∴2,
∴2,又,即
又1,
∴数列{}是以2为公差,1为首项的等差数列.
(2)由(1)知数列{}是以2为公差,1为首项的等差数列,
∴1+(n﹣1)×2=2n﹣1,
∴cn=.
因为k>1,显然{}递增,
由中任意连续三项均能构成一个三角形的三边长,得+>,即+>
解得.又k>1,
∴.
(3)∵,
∴当n为偶数时,==,
∵当n为奇数时,n为偶数,
∴.
综上:
,
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆:经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若数列中存在,其中,,,,及均为正整数,且(),则称数列为“数列”.
(1)若数列的前项和,求证:是“数列”;
(2)若是首项为1,公比为的等比数列,判断是否是“数列”,说明理由;
(3)若是公差为()的等差数列且(),,求证:数列是“数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 合计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若的反函数是,解方程:;
(2)设,是否存在,使得等式成立?若存在,求出的所有取值,如不存在,说明理由;
(3)对于任意,且,当、、能作为一个三角形的三边长时,、、也总能作为某个三角形的三边长,试探究的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com