科目: 来源: 题型:
【题目】已知椭圆的左、右焦点,,是椭圆上的动点,且面积的最大值为.
(1)求椭圆的方程及离心率;
(2)若是椭圆的左、右顶点,直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以为直径的圆与直线恒相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点是圆:上的一动点,点,点在线段上,且满足.
(1)求点的轨迹的方程;
(2)设曲线与轴的正半轴,轴的正半轴的交点分别为点,,斜率为的动直线交曲线于、两点,其中点在第一象限,求四边形面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
(2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
(3)若一年按天计算,试估计收费标准为多少时,年销售额
参考数据:
查看答案和解析>>
科目: 来源: 题型:
【题目】甲袋中装有2个白球,3个黑球,乙袋中装有1个白球,2个黑球,这些球除颜色外完全相同.
(1)从两袋中各取1个球,记事件:取出的2个球均为白球,求;
(2)每次从甲、乙两袋中各取2个球,若取出的白球不少于2个就获奖(每次取完后将球放回原袋),共取了3次,记获奖次数为,写出的分布列并求.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲和乙两个人计划周末参加志愿者活动,约定在周日早上8:00至8:30之间到某公交站搭乘公交车一起去,已知在这段时间内,共有班公交车到达该站,到站的时间分别为8:05,8:15,8:30,如果他们约定见车就搭乘,则甲和乙两个人恰好能搭乘同一班公交车去的概率为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,现有4种不同颜色给图中5个区域涂色,要求任意两个相邻区域不同色,共有______种不同涂色方法;若要求4种颜色都用上且任意两个相邻区域不同色,共有______种不同涂色方法.(用数字作答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com