相关习题
 0  264615  264623  264629  264633  264639  264641  264645  264651  264653  264659  264665  264669  264671  264675  264681  264683  264689  264693  264695  264699  264701  264705  264707  264709  264710  264711  264713  264714  264715  264717  264719  264723  264725  264729  264731  264735  264741  264743  264749  264753  264755  264759  264765  264771  264773  264779  264783  264785  264791  264795  264801  264809  266669 

科目: 来源: 题型:

【题目】已知,函数.若函数在区间上有两个零点,则的取值范围是________.若其在区间上至少有一个零点,则的最小值是________.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=xex-alnx(无理数e=2.718…).

(1)若f(x)在(0,1)单调递减,求实数a的取值范围;

(2)当a=-1时,设g(x)=x(f(x)-xex)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:

质量指标检测分数

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班组生产的产品件数

7

18

40

29

6

乙班组生产的产品件数

8

12

40

32

8

(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;

(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?

甲班组

乙班组

合计

合格品

次品

合计

(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥M-ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.

(1)求证:平面BEF⊥平面MAD;

(2)若,求三棱锥E-ABF的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=2x1aR),若对任意x1[1,+),总存在x2R,使fx1)=gx2),则实数a的取值范围是()

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,集合.

(1)当时,解不等式

(2)若,且,求实数的取值范围;

(3)当时,若函数的定义域为,求函数的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若函数处的切线过点,求的解析式;

2)若函数上单调递减,求实数取值范围;

3)若函数上的最小值为,求实数的值.

查看答案和解析>>

同步练习册答案