相关习题
 0  265275  265283  265289  265293  265299  265301  265305  265311  265313  265319  265325  265329  265331  265335  265341  265343  265349  265353  265355  265359  265361  265365  265367  265369  265370  265371  265373  265374  265375  265377  265379  265383  265385  265389  265391  265395  265401  265403  265409  265413  265415  265419  265425  265431  265433  265439  265443  265445  265451  265455  265461  265469  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

1)讨论函数的单调性;

2)若(其中),证明:

3)是否存在实数a,使得在区间内恒成立,且关于x的方程内有唯一解?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是一“T”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m,东西向渠宽m(从拐角处,即图中处开始).假定渠内的水面始终保持水平位置(即无高度差).

1)在水平面内,过点的一条直线与水渠的内壁交于两点,且与水渠的一边的夹角为,将线段的长度表示为的函数;

2)若从南面漂来一根长为7m的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为t为参数),曲线C2的参数方程为α为参数),以坐标原点为极点.x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;

(Ⅱ)射线与曲线C2交于OP两点,射线与曲线C1交于点Q,若△OPQ的面积为1,求|OP|的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求a的取值范围;

(Ⅱ)恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.

根据行业质量标准规定,该核心部件尺寸x满足:|x12|≤1为一级品,1<|x12|≤2为二级品,|x12|>2为三级品.

(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[1215]的产品,记ξ为这2件产品中尺寸x∈[1415]的产品个数,求ξ的分布列和数学期望;

(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;

(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知F1F2是椭圆Cab0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过F1的直线l交椭圆于AB两点,当△ABF2面积最大时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是边长为4的菱形,∠BAD=60°,对角线ACBD相交于点O,四边形ACFE为梯形,EF//AC,点E在平面ABCD上的射影为OA的中点,AE与平面ABCD所成角为45°.

(Ⅰ)求证:BD⊥平面ACF

(Ⅱ)求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N3342),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N4422),从地铁站步行到单位需要5分钟.现有下列说法:①若800出门,则乘坐公交一定不会迟到;②若802出门,则乘坐公交和地铁上班迟到的可能性相同;③若806出门,则乘坐公交比地铁上班迟到的可能性大;④若812出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.

参考数据:若ZNμσ2),则PμσZμ+σ)=0.6826PμZμ+)=0.9544PμZμ+)=0.9974

查看答案和解析>>

科目: 来源: 题型:

【题目】三棱锥中,,△为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案