科目: 来源: 题型:
【题目】冠状病毒是目前已知RNA病毒中基因组最大的一个病毒家族,可引起人和动物的呼吸系统、消化系统、神经系统等方面的严重疾病.自2019年底开始,一种新型冠状病毒COVID-19开始肆虐全球.人感染了新型冠状病毒后初期常见发热乏力、咽痛干咳、鼻塞流涕、腹痛腹泻等症状,严重者可致呼吸困难、脏器衰竭甚至死亡.筛查时可先通过血常规和肺部CT进行初步判断,若血液中白细胞、淋巴细胞有明显减少或肺部CT有可见明显磨玻璃影等病毒性肺炎感染症状则为疑似病例,可再通过核酸检测做最终判断,现A、B、C、D、E五人均出现了发热咳嗽等症状,且五人发病前14天因求学、出差、旅行、探亲等原因均有疫区旅居史.经过初次血液化验已确定其中有且仅有一人罹患新冠肺炎,其余四人只是普通流感,但因化验报告不慎遗失,现需要再次化验以确定五人中唯一患者的姓名,下面是两种化验方案:
方案甲:逐个化验,直到能确定患者为止;
方案乙:混合检验,先任取三人血样混合在一起化验,若混合血液化验结果呈阳性则表明患者在这3人中,然后再逐个化验,直到能确定患者为止;若混合血液化验结果呈阴性,则在另外2人中任选一人进行化验.假设在接受检验的血液样本中每份样本是阳性结果是等可能的,且每份样本的检验结果是阳性还是阴性都是相互独立的.
(1)求依方案甲所需化验次数
不少于依方案乙所需化验次数
的概率;
(2)求
的期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的
、
、
三种样式,且每个盲盒只装一个.
(1)若每个盲盒装有
、
、
三种样式玩偶的概率相同.某同学已经有了
样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?
(2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有
的人购买了该款盲盒,在这些购买者当中,女生占
;而在未购买者当中,男生女生各占
.请根据以上信息填写下表,并分析是否有
的把握认为购买该款盲盒与性别有关?
女生 | 男生 | 总计 | |
购买 | |||
未购买 | |||
总计 |
参考公式:
,其中
.
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:
周数 | 1 | 2 | 3 | 4 | 5 | 6 |
盒数 | 16 | ______ | 23 | 25 | 26 | 30 |
由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1、3周数据进行检验.
①请用4、5、6周的数据求出
关于
的线性回归方程
;
(注:
,
)
②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
③如果通过②的检验得到的回归直线方程可靠,我们可以认为第2周卖出的盒数误差也不超过2盒,请你求出第2周卖出的盒数的可能取值;如果不可靠,请你设计一个估计第2周卖出的盒数的方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知离心率为
的椭圆
的短轴的两个端点分别为
、
,
为椭圆
上异于
、
的动点,且
的面积最大值为
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)射线
与椭圆
交于点
,过点
作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点
和点
,求
的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面
平面
,四边形
是梯形,
//
,四边形
是矩形,
,
,
是
上的动点.
![]()
(1)试确定
点的位置,使
//平面
;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】有标号分别为1,2,3,4,5,6的6张抗疫宣传海报,要求排成2行3列,则共有_______种不同的排法,如果再要求每列中前面一张的标号比其后面一张的标号小,则共有_______种不同的排法.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的极坐标方程为
,以极点
为原点,极轴所在直线为
轴建立直角坐标系,过点
作倾斜角为
(
)的直线
交曲线
于
、
两点.
(1)求曲线
的直角坐标方程,并写出直线
的参数方程;
(2)过点
的另一条直线
与
垂直,且与曲线
交于
,
两点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
:
,点
是
上的不同于顶点的动点,
上在点
处的切线
分别与
轴轴交于点
、
.若存在常数
满足对任意的点
都有
.
(Ⅰ)求实数
,
的值;
(Ⅱ)过点
作
的垂线与
交于不同于
的一点
,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com