科目: 来源: 题型:
【题目】某城市要建造一个边长为
的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过对边
上一点
的区域
内作一次函数
的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.
![]()
(1)写出函数关系式
;
(2)设点
的横坐标为
,将四边形
的面积
表示成关于
的函数
,并求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,给出下列命题:
①若
既是奇函数又是偶函数,则
;
②若
是奇函数,且
,则
至少有三个零点;
③若
在
上不是单调函数,则
不存在反函数;
④若
的最大值和最小值分别为
、
,则
的值域为![]()
则其中正确的命题个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码
分别为1~7).
![]()
(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,求
关于
的线性回归方程;
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com