相关习题
 0  265707  265715  265721  265725  265731  265733  265737  265743  265745  265751  265757  265761  265763  265767  265773  265775  265781  265785  265787  265791  265793  265797  265799  265801  265802  265803  265805  265806  265807  265809  265811  265815  265817  265821  265823  265827  265833  265835  265841  265845  265847  265851  265857  265863  265865  265871  265875  265877  265883  265887  265893  265901  266669 

科目: 来源: 题型:

【题目】已知是定义在上的函数,记的最大值为.若存在,满足,则称一次函数的“逼近函数”,此时的称为上的“逼近确界”.

(1)验证:的“逼近函数”;

(2)已知.若的“逼近函数”,求的值;

(3)已知的逼近确界为,求证:对任意常数.

查看答案和解析>>

科目: 来源: 题型:

【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知有穷数列共有,且.

1)若,试写出一个满足条件的数列

2)若,求证:数列为递增数列的充要条件是

3)若,则所有可能的取值共有多少个?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆经过点,其左焦点为.点的直线交椭圆于两点,交轴的正半轴于点.

1)求椭圆的方程;

2)过点且与垂直的直线交椭圆于两点,若四边形的面积为,求直线的方程;

3)设,求证:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利. 已知某条线路通车后,电车的发车时间间隔(单位:分钟)满足. 经市场调研测算,电车载客量与发车时间间隔相关,当时电车为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为.记电车载客量为.

1)求的表达式,并求当发车时间间隔为分钟时,电车的载客量;

2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已定义,已知函数的定义域都是,则下列四个命题中为真命题的是_________.(写出所有真命题的序号)

都是奇函数,则函数为奇函数.

都是偶函数,则函数为偶函数.

都是增函数,则函数为增函数.

都是减函数,则函数为减函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知位数满足下列条件:①各个数字只能从集合中选取;②若其中有数字,则在的前面不含,将这样的位数的个数记为

1)求

2)探究之间的关系,求出数列的通项公式;

3)对于每个正整数,在之间插入得到一个新数列,设是数列的前项和,试探究能否成立,写出你探究得到的结论并给出证明;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线的左右顶点分别为.直线和两条渐近线交于点,点在第一象限且,是双曲线上的任意一点.

(1)求双曲线的标准方程;

(2)是否存在点P使得为直角三角形?若存在,求出点P的个数;

(3)直线与直线分别交于点,证明:以为直径的圆必过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数对任意的满足:,当时,

1)求出函数在R上零点;

2)求满足不等式的实数的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱的交点记为E,F.

(1)求三棱柱的体积;

(2)求三棱柱中异面直线所成角的大小.

查看答案和解析>>

同步练习册答案