相关习题
 0  265717  265725  265731  265735  265741  265743  265747  265753  265755  265761  265767  265771  265773  265777  265783  265785  265791  265795  265797  265801  265803  265807  265809  265811  265812  265813  265815  265816  265817  265819  265821  265825  265827  265831  265833  265837  265843  265845  265851  265855  265857  265861  265867  265873  265875  265881  265885  265887  265893  265897  265903  265911  266669 

科目: 来源: 题型:

【题目】某校决定为本校上学所需时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分钟),将600人随机编号为001,002,…,600,抽取的50名学生上学所需时间均不超过60分钟,将上学所需时间按如下方式分成六组,第一组上学所需时间在[0,10),第二组上学所需时间在[10,20)…,第六组上学所需时间在[50,60],得到各组人数的频率分布直方图,如下图

(1)若抽取的50个样本是用系统抽样的方法得到,且第一个抽取的号码为006,则第五个抽取的号码是多少?

(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为ab,求满足的事件的概率;

(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列 为其前项的和,满足

1)求数列的通项公式;

2)设数列的前项和为,数列的前项和为,求证:当

3)(理)已知当,且时有,其中,求满足的所有的值.

4)(文)若函数的定义域为,并且,求证

查看答案和解析>>

科目: 来源: 题型:

【题目】若动点到定点与定直线的距离之和为

1)求点的轨迹方程,并在答题卡所示位置画出方程的曲线草图;

2)(理)记(1)得到的轨迹为曲线,问曲线上关于点对称的不同点有几对?请说明理由.

3)(文)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的周期为,图象的一个对称中心为.将函数图象上所有点的横坐标伸长到原来的(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)(理)求证:存在,使得能按照某种顺序成等差数列.

3)(文)定义:当函数取得最值时,函数图像上对应的点称为函数的最值点,如果函数的图像上至少有一个最大值点和一个最小值点在圆的内部或圆周上,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为件.

1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,该公司的利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】(理)在长方体中,,点在棱上移动.

1)探求多长时,直线与平面角;

2)点移动为棱中点时,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数

(1)讨论函数的单调性;

(2)若的极值点,且曲线在两点 处的切线互相平行,这两条切线在y轴上的截距分别为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

同步练习册答案