【题目】已知数列
,
为其前
项的和,满足
.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,数列
的前
项和为
,求证:当
时
;
(3)(理)已知当
,且
时有
,其中
,求满足
的所有
的值.
(4)(文)若函数
的定义域为
,并且
,求证
.
【答案】(1)
(2)证明见解析 (3)
或
(4)证明见解析
【解析】
(1)根据和项与通项关系求解;
(2)法一:根据定义直接化简
,再对照
,证得结果;法二,利用数学归纳法进行证明;
(3)先根据叠加法得
时
,再逐一验证
,即得结果;
(4)先根据定义域为
,讨论分析得
的取值范围,再根据极限确定
的取值范围,即证得结果.
解:(1)当
时,![]()
又
,所以![]()
(2)、<法一>
,
,
![]()
![]()
<法二>:数学归纳法
①
时,
,![]()
②假设
时有
当
时,![]()
![]()
是原式成立
由①②可知当
时
;
(3)、(理)![]()
,![]()
![]()
相加得,
![]()
,
时,
无解
又当
时;
,
时,
;
时,![]()
时,
为偶数,而
为奇数,不符合
时,
为奇数,而
为偶数,不符合
综上所述
或者![]()
(4)、易知
,否则若
,则
,与
矛盾
因为函数
的定义域为
,所以
恒不为零,
而
的值域为
所以
,
又
时,
,与
矛盾,故![]()
且![]()
,![]()
即有
。
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),在同一平面直角坐标系中,将曲线
上的点按坐标变换
得到曲线
,以原点为极点,
轴的正半轴为极轴,建立极坐标系.设
点的极坐标为
.
(1)求曲线
的极坐标方程;
(2)若过点
且倾斜角为
的直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:
,经过点
,倾斜角为
的直线l与曲线C交于A,B两点
(I)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}、{bn}满足:a1=
,an+bn=1,bn+1=
.
(1)求a2,a3;
(2)证数列
为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
已知在平面直角坐标系xOy中,O为坐标原点,曲线C:
(α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线l:ρ
.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以
轴正半轴为极轴,建立极坐标系,点
的极坐标为
,直线
的极坐标方程为
,且
过点
,曲线
的参数方程为
(
为参数).
(Ⅰ)求曲线
上的点到直线
的距离的最大值;
(Ⅱ)过点
与直线
平行的直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线![]()
为公海与领海的分界线,一艘巡逻艇在原点
处发现了北偏东
海面上
处有一艘走私船,走私船正向停泊在公海上接应的走私海轮
航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若
与公海的最近距离20海里,要保证在领海内捕获走私船,则
,
之间的最远距离是多少海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com