科目: 来源: 题型:
【题目】下列命题中真命题的个数是
![]()
中,
是
的三内角A,B,C成等差数列的充要条件;
若“
,则
”的逆命题为真命题;
是
或
充分不必要条件;
是
的充要条件.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 | |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A. 甲,乙,丙第三次月考物理成绩的平均数为86
B. 在这三次月考物理成绩中,甲的成绩平均分最高
C. 在这三次月考物理成绩中,乙的成绩最稳定
D. 在这三次月考物理成绩中,丙的成绩方差最大
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设抛物线
与
的公共点
的横坐标为
,过
且与
相切的直线交
于另一点
,过
且与
相切的直线交
于另一点
,记
为
的面积.
![]()
(Ⅰ)求
的值(用
表示);
(Ⅱ)若
,求
的取值范围.
注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为
,以极点为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数,
).
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)若曲线
上的动点
到直线
的最大距离为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某生物兴趣小组对冬季昼夜温差与反季节新品种大豆发芽数之间的关系进行研究,他们分别记录了
月
日至
月
日每天的昼夜温差与实验室每天
颗种子的发芽数,得到以下表格
![]()
该兴趣小组确定的研究方案是:先从这
组数据中选取
组数据,然后用剩下的
组数据求线性回归方程,再用被选取的
组数据进行检验.
(1) 求统计数据中发芽数的平均数与方差;
(2) 若选取的是
月
日与
月
日的两组数据,请根据
月
日至
月
日的数据,求出发芽数
关于温差
的线性回归方程
,若由线性回归方程得到的估计数据与所选取的检验数据的误差不超过
,则认为得到的线性回归方程是可靠的,问得到的线性回归方程是否可靠? 附:线性回归方程
中斜率和截距最小二乘估法计算公式:
, ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
的最大值为
.
(Ⅰ)求实数
的值;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)当
时,令
,是否存在区间
.使得函数
在区间
上的值域为
若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
![]()
(1)求这4000名考生的半均成绩
(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布
,其中
分别取考生的平均成绩
和考生成绩的方差
,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为
,求
.(精确到0.001)
附:①
;
②
,则
;
③
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com