科目: 来源: 题型:
【题目】为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致戏察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为(肩手左右)的游戏,方案如下:
游戏准备:
选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的”左“字,另一张纸板正反两面打印有相同的“右”字.
游戏进行:
一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.
游戏评价:
为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得﹣1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得﹣1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X.
(1)求X的分布列;
(2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,pi(i=0,1,…,8)表示“甲小朋友的当前累计得分为i时,本轮游戏甲小朋友最终获胜”的概率,则P0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.
①证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;
②求p4,并根据p4的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.8”的假设.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线C:
的焦点为F,过F的直线
交抛物线C于A,B两点.
(1)求线段AF的中点M的轨迹方程;
(2)已知△AOB的面积是△BOF面积的3倍,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0、A1、A2…、A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1张A0纸对裁后可以得到2张A1纸,1张A1纸对裁可以得到2张A2纸,依此类推.这是因为A系列纸张的长宽比为
:1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈
,那么A4纸的长度为( )
A.
厘米B.
厘米C.
厘米D.
厘米
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点为
,左右两顶点
,点
为椭圆
上任意一点,满足直线
的斜率之积为
,且
的最大值为4.
(1)求椭圆
的标准方程;
(2)已知直线
与
轴的交点为
,过
点的直线
与椭圆
相交与
两点,连接点
并延长,交轨迹
于一点
.求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】京剧是我国的国粹,是“国家级非物质文化遗产”,为纪念著名京剧表演艺术家,京剧艺术大师梅兰芳先生,某电视台《我爱京剧》的一期比赛中,2位“梅派”传人和4位京剧票友(资深业余爱好者)在幕后登台演唱同一曲目《贵妃醉酒》选段,假设6位演员的演唱水平相当,由现场40位大众评委和“梅派”传人的朋友猜测哪两位是真正的“梅派”传人.
(1)此栏目编导对本期的40位大众评委的年龄和对京剧知识的了解进行调查,根据调查得到的数据如下:
京剧票友 | 一般爱好者 | 合计 | |
50岁以上 | 15 | 10 | 25 |
50岁以下 | 3 | 12 | 15 |
合计 | 18 | 22 | 40 |
试问:在犯错误的概率不超过多少的前提下,可以认为年龄的大小与对京剧知识的了解有关系?
(2)若在一轮中演唱中,每猜出一位亮相一位,且规定猜出2位“梅派”传人”或猜出5人后就终止,记本轮竞猜一共竞猜
次,求随机变量
的分布列与期望.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com