精英家教网 > 高中数学 > 题目详情

【题目】为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致戏察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为(肩手左右)的游戏,方案如下:

游戏准备:

选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的”左“字,另一张纸板正反两面打印有相同的“右”字.

游戏进行:

一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.

游戏评价:

为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得﹣1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得﹣1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X

1)求X的分布列;

2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,pii01,…,8)表示“甲小朋友的当前累计得分为i时,本轮游戏甲小朋友最终获胜”的概率,则P00p81piapi1+bpi+cpi+1i12,…,7),其中aPX=﹣1),bPX0),cPX1).假设α0.5β0.8

①证明:{pi+1pi}i012,…,7)为等比数列;

②求p4,并根据p4的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.8”的假设.

【答案】1)分布列见解析(2)①证明见解析,②p4,不能够

【解析】

1)先求出的所有可能取值,再用表示出取各个值时的概率,即可得X的分布列.

2)①由(1)得的值,再利用等比数列的定义,证明数列{pi+1pi}i012,…,7)为等比数列;②利用①的结论,将表示,再根据,可求出,从而得的值,即可验证假设.

1的所有可能取值为

所以X的分布列为:

2)① 由(1)得

因此,故

又因为

所以{pi+1pi}i012,…,7)为公比为,首项为等比数列.

② 由①可得

由于,故

所以

表示最终甲获胜的概率,由计算结果可以看出,“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.8”,甲能获胜的概率为,此时得出错误的结论的概率非常小,故能充分验证这个方案的假设.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,其中,为实常数

(1)若时,讨论函数的单调性;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)若,当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型工厂有6台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为.已知1名工人每月只有维修2台机器的能力(若有2台机器同时出现故障,工厂只有1名维修工人,则该工人只能逐台维修,对工厂的正常运行没有任何影响),每台机器不出现故障或出现故障时能及时得到维修,就能使该厂获得10万元的利润,否则将亏损2万元.该工厂每月需支付给每名维修工人1万元的工资.

(1)若每台机器在当月不出现故障或出现故障时,有工人进行维修(例如:3台大型机器出现故障,则至少需要2名维修工人),则称工厂能正常运行.若该厂只有1名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有2名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图(1)梯形中,,过,沿翻折后得图(2),使得,又点满足,连接,且.

1)证明:平面

2)求三棱锥外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为.

1)若函数存在单调递减区间,求实数的取值范围;

2)设,对于的值域为,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的直线与抛物线交于两点,以两点为切点分别作抛物线的切线,设交于点.

1)求

2)过的直线交抛物线两点,证明:,并求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求证:PN∥AB;

(2)求NC与平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形ABCDBDEF均为菱形,,且

求证:平面BDEF

求直线AD与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售一种水果的经验表明,该水果每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为6/千克时,每日可售出该水果52千克.

1)求的值;

2)若该水果的成本为5/千克,试确定销售价格的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.

查看答案和解析>>

同步练习册答案