科目: 来源: 题型:
【题目】近年来,随着国家综合国力的提升和科技的进步,截至
年底,中国铁路运营里程达
万千米,这个数字比
年增长了
倍;高铁运营里程突破
万千米,占世界高铁运营里程的
以上,居世界第一位.如表截取了
年中国高铁密度的发展情况(单位:千米/万平方千米).
年份 |
|
|
|
|
|
年份代码 |
|
|
|
|
|
高铁密度 |
|
|
|
|
|
已知高铁密度
与年份代码
之间满足关系式
(
为大于
的常数).
(1)根据所给数据,求
关于
的回归方程(精确到
位);
(2)利用(1)的结论,预测到哪一年,高铁密度会超过
千米/万平方千米.
参考公式:设具有线性相关系的两个变量
的一组数据为
,则回归方程
的系数:
,![]()
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过椭圆
的四个顶点与坐标轴垂直的四条直线围成的矩形
(
是第一象限内的点)的面积为
,且过椭圆
的右焦点
的倾斜角为
的直线过点
.
(1)求椭圆
的标准方程
(2)若射线
与椭圆
的交点分别为
.当它们的斜率之积为
时,试问
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
,过点
作
轴的垂线
交函数
图象于点
,以
为切点作函数
图象的切线交
轴于点
,再过
作
轴的垂线
交函数
图象于点
,
,以此类推得点
,记
的横坐标为
,
.
(1)证明数列
为等比数列并求出通项公式;
(2)设直线
与函数
的图象相交于点
,记
(其中
为坐标原点),求数列
的前
项和
.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目: 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
![]()
A.256B.350C.162D.96
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD为等边三角形,平面ABCD⊥平面PAD;点E、M分别为PD、PC的中点.
![]()
(1)证明:CE//平面PAB;
(2)求三棱锥M﹣BAD的体积;
(3)求直线DM与平面ABM所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,a1
,公比q>0,S1+a1,S3+a3,S2+a2成等差数列.
(1)求{an};
(2)设bn
,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)
x+1,x∈R.
(1)求函数f(x)的最小正周期并写出函数f(x)图象的对称轴方程和对称中心;
(2)求函数f(x)在区间
上的最大值和最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)已知圆C过点P(1,1),且与圆M:
关于直线
对称.
(1)求圆C的方程:
(2)设Q为圆C上的一个动点,求
最小值;
(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com