科目: 来源: 题型:
【题目】已知符号函数sgnx
f(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgn xB.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,椭圆
上一点
,
轴上存在一点
满足
,
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相切于第一象限上的点
,且分别与
轴、
轴交于
两点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了调查公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.
![]()
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(1)是否有
的把握认为饮食习惯与月收入有关系?若有,请说明理由,若没有,说明理由并分析原因;
(2)从饮食指数在
内的员工中任选2人,求他们的饮食指数均在
内的概率;
(3)经调查某地若干户家庭的年收入
(万元)和年饮支出
(万元)具有线性相关关系,并得到
关于
的回归直线方程:
.若一个员工的月收入恰好为这30人的月平均收入,估计该人的年饮食支出费用.
附:
,
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定点
,
,直线
、
相交于点
,且它们的斜率之积为
,记动点
的轨迹为曲线
。
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
、
两点,是否存在定点
,使得直线
与
斜率之积为定值,若存在,求出
坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.
![]()
(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“很幸福”的人数,求
的分布列及
.
查看答案和解析>>
科目: 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点为别为
、
,且过点
和
.
![]()
(1)求椭圆的标准方程;
(2)如图,点
为椭圆上一动点(非长轴端点),
的延长线与椭圆交于点
,
的延长线与椭圆交于点
,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com