相关习题
 0  39363  39371  39377  39381  39387  39389  39393  39399  39401  39407  39413  39417  39419  39423  39429  39431  39437  39441  39443  39447  39449  39453  39455  39457  39458  39459  39461  39462  39463  39465  39467  39471  39473  39477  39479  39483  39489  39491  39497  39501  39503  39507  39513  39519  39521  39527  39531  39533  39539  39543  39549  39557  266669 

科目: 来源: 题型:

已知

⑴求的值;⑵求的值.

查看答案和解析>>

科目: 来源: 题型:

已知,则的最小值为             

查看答案和解析>>

科目: 来源: 题型:

如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知定义在(0,+∞)上的函数f(x)=
(4k-1)ln
1
x
,x∈(0 , e]
kx2-kx,x∈(e , +∞)
是增函数
(1)求常数k的取值范围
(2)过点(1,0)的直线与f(x)(x∈(e,+∞))的图象有交点,求该直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某车站每天8:00~9:00,9:00~10:00都恰有一辆客车到站,8:00~9:00到站的客车A可能在8:10,8:30,8:50到站,其概率依次为
1
6
1
2
1
3
;9:00~10:00到站的客车B可能在9:10,9:30,9:50到站,其概率依次为
1
3
1
2
1
6

(1)旅客甲8:00到站,设他的候车时间为ξ,求ξ的分布列和Eξ;
(2)旅客乙8:20到站,设他的候车时间为η,求η的分布列和Eη.

查看答案和解析>>

科目: 来源: 题型:

已知向量
a
=(2cosx,sinx)
b
=(cosx,2
3
cosx)
,函数f(x)=
a
b
+1

(1)求函数f(x)的单调递增区间.
(2)在△ABC中,a,b,c分别是角A、B、C的对边,a=1且f(A)=3,求△ABC面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生十进位现象,则称n为“良数”.例如:32是“良数”,因32+33+34不产生进位现象;23不是“良数”,因23+24+25产生进位现象.那么,小于1000的“良数”的个数为(  )

查看答案和解析>>

科目: 来源: 题型:

设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则q等于(  )

查看答案和解析>>

科目: 来源: 题型:

已知a,b是正实数,设函数f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)设h(x)=f(x)-g(x),求h(x)的单调区间;
(Ⅱ)若存在x0,使x0∈[
a+b
4
3a+b
5
]且f(x0)≤g(x0)成立,求
b
a
的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的点到左焦点为F的最大距离是2+
3
,已知点M(1,e)在椭圆上,其中e为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点且斜率为K的直线交椭圆于P、Q两点,其中P在第一象限,它在x轴上的射影为点N,直线QN交椭圆于另一点H.证明:对任意的K>0,点P恒在以线段QH为直径的圆内.

查看答案和解析>>

同步练习册答案