分析 (1)分别对BC和AB为研究对象,由动量守恒及机械能守恒可求得第1个小球一槽碰撞后的共同速度;
(2)AB相撞后,一起向左做匀减速运动,由牛顿第二定律可求得共同的加速度;由运动学公式可求得运动时间,则可判断C与相撞是A是否停止,再由动量守恒可求得共同速度;
(3)物体之间的相互摩擦产生热量,由功能关系即可求出产生的总热量.
解答 解:(1、2)释放瞬间,系统动量守恒,根据动量守恒定律得:mBvB=mCvC…①
根据机械能守恒定律得:${E_P}=\frac{1}{2}{m_B}{v_B}^2+\frac{1}{2}{m_C}{v_C}^2$…②
联立①②得:vB=2m/s,vC=1m/s
第一个小球与槽碰撞过程中,系统动量守恒,以B球速度方向为正方向,根据动量守恒定律得:mBvB=(mB+mA)v1…③
代入数据得:v1=1m/s,方向水平向左
对AB整体有:μ(mB+mA+mC)g=(mB+mA)a
代入数据得:a=6m/s2
AB整体开始运动到速度减为0的时间为:$t=\frac{v_1}{a}=\frac{1}{6}s$
经过的位移为:${s_1}=\frac{{0+{v_1}}}{2}t=\frac{0+1}{2}×\frac{1}{6}=\frac{1}{12}m$
在这段时间里,C走过的位移为:${s_C}={v_C}t=\frac{1}{6}m$
因为${s_1}+{s_C}<\frac{L}{2}$,故AB是停下来后与C发生碰撞.
mCvC=(mB+mA+mC)v2
代入数据得:v2=0.5m/s,方向水平向右
(3)槽与桌面间因摩擦而产生的热量为:
$\begin{array}{l}Q={Q_1}+{Q_2}=μ({m_B}+{m_A}+m{\;}_C)g{s_1}+\frac{1}{2}({m_B}+{m_A}+m{\;}_C){v_2}^2\\=0.1+0.05=0.15J\\.\end{array}$
答:(1)第一个小球与槽碰撞后的共同速度大小为1m/s,方向水平向左.
(2)第二个小球与槽碰撞后的共同速度大小为0.5m/s,方向水平向右.
(3)整个运动过程中,槽与桌面间因摩擦而产生的热量为0.15J
点评 木题考查动量守恒定律及功能关系的综合应用,在解题时要注意各过程中守恒的量,从而得出守恒关系进行解题.
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
| A. | 上板带正电 | B. | 下板带正电 | ||
| C. | 两板间的电压6×103V | D. | 两板间的电压1.5×103V |
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com