精英家教网 > 高中物理 > 题目详情
15.某物理兴趣小组在学习了电流的磁效应后,得知长直通导线周围某点磁场的磁感应强度B的大小与长直导线中的电流大小I成正比,与该点离长直导线的距离r成反比.该小组欲利用如图甲所示的实验装置验证此结论是否正确,所用的器材有:长直导线、学生电源,直流电流表(量程为0~3A)、滑动变阻器、小磁针(置于刻有360°刻度的盘面上)、开关及导线若干.

实验步骤如下:
a.将小磁针放置在水平桌面上,等小磁针静止后,在小磁针上方沿小磁针静止时的指向水平放置长直导线,如图甲所示;
b.该小组测出多组小磁针与通电长直导线间的竖直距离r,长直导线中电流的大小I及小磁针的偏转角度θ;
c.根据测量结果进行分析,得出结论.
回答下列问题:
(1)某次测量时,电路中电流表的示数如图乙所示,则该电流表的读数为2.00A.
(2)在某次测量中,该小组发现长直导线通电后小磁针偏离南北方向的角度为30°(如图丙所示),已知实验所在处的地磁场水平分量大小为B0=3×10-5T,则此时长直导线中的电流在小磁针处产生的磁感应强度B的大小为1.7×10-5T(结果保留两位小数).
(3)该小组通过对所测数据的分析,作出了小磁针偏转角度的正切值tanθ与$\frac{I}{r}$之间的图象如图丁所示,据此得出了通电长直导线周围磁场的磁感应强度B与通电电流I成正比,与长导线的距离r成反比的结论,其依据是B=Btanθ,而偏角的正切值与$\frac{I}{r}$成正比.
(4)通过查找资料,该小组得知通电长直导线周围某点的磁感应强度B与电流I及距离r之间的数学关系为B=$\frac{{μ}_{0}}{2π}$•$\frac{I}{r}$,其中μ0为介质的磁导率.根据题给数据和测量结果,可计算出μ0=4π×10-7T•m/A.

分析 (1)明确电流表量程,从而确定最小分度,则可以求得电流表示数;
(2)小磁针后来的指向为合磁场方向,因此根据平行四边形定则,已知某个磁场大小和方向与合磁场方向,可以求出另一个磁场大小.
(3)根据(2)中分析明确产生磁场与地磁场之间的关系,同时根据图象进行分析即可明确对应的结论;
(4)根据给出的函数关系进行分析,结合图象规律即可求得μ0的大小.

解答 解:(1)电流表量程为3A,则最小分度为0.1A,由指针示数可知电流为2.00A;
(2)电流产生向北的磁场,则指针指向地磁场分量和电流磁场的合磁场方向,如图所示;
则有:tan30°=$\frac{B}{{B}_{地}}$
解得:B=3×10-5×$\frac{\sqrt{3}}{3}$=1.7×10-5T;
(3)由图可知,偏角的正切值与$\frac{I}{r}$成正比,而根据(2)中分析可知,B=Btanθ,则可知B与$\frac{I}{r}$成正比,故说明通电长直导线周围磁场的磁感应强度B与通电电流I成正比,与长导线的距离r成反比;
(4)由公式B=B0tanθ=$\frac{{μ}_{0}}{2π}$•$\frac{I}{r}$可知,图象的斜率k=$\frac{{μ}_{0}}{2π{B}_{0}}$=$\frac{0.14}{21.0}$
解得:μ0=4π×10-7
故答案为:(1)2.00;(2)1.7×10-5T;(3)电流产生的磁感应强度B=Btanθ,而偏角的正切值与$\frac{I}{r}$成正比; (4)4π×10-7

点评 本题考查探究电流磁场的实验,要注意明确磁感应强度为矢量,其运算符合平行四边形定则,同时要注意明确图象的性质,能根据图象分析数据是实验中常涉及到的基本内容,要注意掌握相关分析方法.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

17.已知一汽车在平直公路上运动,它的位移-时间图象如图(甲)所示.
(1)根据图象在图(乙)所示的位置坐标轴上标出A、B、C、D、E各点代表的汽车的位置;
(2)求出前4s内的平均速度;
(3)求出第5s末的瞬时速度;
(4)求出第7s末的加速度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

18.关于摩擦力,下列说法中正确的是(  )
A.相互压紧的粗糙物体间一定存在摩擦力
B.相互接触的粗糙物体间的压力增大,摩擦力也一定增大
C.静止的物体不可能受到滑动摩擦力的作用
D.摩擦力方向可能与物体运动的方向相同

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.如图所示,质量为m的带负电的小物块置于倾角为53°的绝缘光滑斜面上,当整个装置处于竖直向下的匀强电场中时,小物块恰好静止在斜面上.现将电场方向突然改为水平向右,而场强大小不变,则(  )
A.小物块仍静止B.小物块的机械能将增大
C.小物块将沿斜面加速下滑D.小物块将脱离斜面运动

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

10.如图所示为在竖直平面内建立的坐标系xOy,在xOy的第一象限内,x=4d处竖直放置高l0=2$\sqrt{2}$d粒子吸收板CD,x=5d处竖直放置一个长l=5d的粒子吸收板MN,在MN左侧存在垂直纸面向外的磁感应强度为B的匀强磁场,右侧存在竖直向下的匀强电场.在原点O处有一粒子源,可以沿y轴正向射出质量为m、电量为+q的不同速率的带电粒子,已知电场强度为$\frac{10q{B}^{2}d}{m{π}^{2}}$,粒子的重力及粒子间的相互作用力均忽略不计,打到板CD、MN上的粒子均被吸收.
(1)若从O点射出的粒子能打到板MN上,求粒子的速度v的大小;
(2)若某粒子恰好能够从M点(刚好未碰到吸收板)进入到电场,求该粒子到达x轴时的动能;
(3)某粒子恰好能够从M点(刚好未碰到吸收板)进入到电场,求该粒子从O点射出到通过x轴所用的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

20.如图所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧-段被弯成半径为$\frac{L}{2}$的四分之一圆弧,圆弧导轨的左、右两段处于高度相差$\frac{L}{2}$的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.
(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;
(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;
(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,
a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;
b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

7.如图所示,两根平行放置的金属导轨COD、C′O′D′,导轨OC,O′C′部分粗糙,处在同一水平面内,其空间气方向水平向左、磁感应强度B1=$\frac{25}{8}$T的匀强磁场,导轨OD,O′D′部分光滑且足够长,与水平面成30°,其空间有方向垂直于导轨向上、磁感应强度B2=1T的匀强磁场,OO′的连线垂直于OC、O′C′,金属杆M垂直导轨放置在OC段处,金属杆N垂直导轨放置在OD段上且距离O点足够远处,己知导轨间相距d=1m,金属杆与水平导轨间的动摩擦因数μ=0.4,两杆质量均为m=1kg,电阻均为R=0.5Ω;
(1)若金属杆N由静止释放,求其沿导轨OD下滑的最大速度vm
(2)若使金属杆N在平行导轨的外力F的作用下,由静止开始沿导轨向下做加速度a=2m/s2的匀加速运动,求t=2s时的外力F;
(3)在第(2)问中,金属杆N运动的同时也给金属杆M向左的初速度v1=4m/s,求当金属杆M停止速度时,金属杆N沿OD下滑的距离.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

4.闭合线圈abcd在磁场中运动到如图所示位置时,ab边受到竖直向上的磁场力作用,则可判断出此线圈的运动情况是(  )
A.向左运动,移进磁场B.向右运动,移出磁场
C.以ad边为轴转动D.以ab边为轴转动

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

5.如图所示,空间中存在着水平向右的匀强电场,电场强度大小为E=5$\sqrt{3}$N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=1.0T.有一带正电的小球,质量m=1.0×10-6kg,电荷量q=2×10-6C,正以速度v在图示的竖直面内做匀速直线运动,取g=10m/s2

(1)求小球做匀速直线运动的速度v的大小和方向;
(2)若当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),为使小球仍沿原速度方向做直线运动需改变电场,求此时的电场的最小值和方向.

查看答案和解析>>

同步练习册答案