| A. | $\frac{R-d}{R+h}$ | B. | $\frac{(R-d)^{2}}{(R+h)^{2}}$ | C. | $\frac{(R-d)(R+h)^{2}}{{R}^{3}}$ | D. | $\frac{(R-d)(R+h)}{{R}^{2}}$ |
分析 根据题意知,地球表面的重力加速度等于半径为R的球体在表面产生的加速度,深度为d的地球内部的重力加速度相当于半径为R-d的球体在其表面产生的重力加速度,根据地球质量分布均匀得到加速度的表达式,再根据半径关系求解深度为d处的重力加速度与地面重力加速度的比值.卫星绕地球做圆周运动时,运用万有引力提供向心力可以解出高度为h处的加速度,再求其比值.
解答 解:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:$g=\frac{GM}{R^2}$,
由于地球的质量为:$M=\frac{4}{3}π{R^3}ρ$,
所以重力加速度的表达式可写成:$g=\frac{4}{3}πGρR$.
根据题意有,质量分布均匀的球壳对壳内物体的引力为零,固在深度为d的地球内部,受到地球的万有引力即为半径等于(R-d)的球体在其表面产生的万有引力,故井底的重力加速度为:$g′=\frac{4}{3}πGρ(R-d)$,
所以有:$\frac{g′}{g}=\frac{R-d}{R}$.
根据万有引力提供向心力为:$G\frac{Mm}{{{{(R+h)}^2}}}=ma$,
“天宫一号”的加速度为:$a=\frac{GM}{{{{(R+h)}^2}}}$,
所以有:$\frac{a}{g}=\frac{R^2}{{{{(R+h)}^2}}}$,
得:$\frac{g′}{a}=\frac{{(R-d){{(R+h)}^2}}}{R^3}$,故C正确,ABD错误.
故选:C
点评 抓住在地球表面重力和万有引力相等,在地球内部,地球的重力和万有引力相等,要注意在地球内部距离地面d处所谓的地球的质量不是整个地球的质量而是半径为(R-d)的球体的质量m.
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
| A. | 1g的0℃的水的内能比1g的O℃的冰的内能大 | |
| B. | 只要两物体的温度相同,它们的分子平均动能一定相同 | |
| C. | 阳光从缝隙射入教室,从阳光中看到的尘埃的运动是布朗运动 | |
| D. | 气缸里的气体难压缩说明了分子间有斥力 | |
| E. | 两分子间的引力和斥力都随它们的距离增大而减小 |
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
| A. | 该卫星运行的向心加速度大小是地球表面重力加速度的$\frac{1}{{n}^{2}}$ | |
| B. | 该卫星运行的向心加速度大小是地球表面重力加速度的$\frac{1}{n}$ | |
| C. | 该卫星的运行速度大小是第一宇宙速度大小的$\frac{1}{{n}^{2}}$ | |
| D. | 该卫星的运行速度大小是第一宇宙速度大小的$\frac{1}{\sqrt{n}}$ |
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
| A. | 弹珠从释放手柄开始到触碰障碍物之前的过程中机械能守恒 | |
| B. | 此过程中,弹簧的最大弹性势能为mg(L+R) sinθ+$\frac{1}{2}$mv2 | |
| C. | 弹珠脱离弹簧的瞬间,其动能和重力势能之和达到最大 | |
| D. | 调整手柄的位置使L变化,可以使弹珠从C点离开后做匀变速直线运动,直到碰到障碍物 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
| A. | 该卫星的向心加速度不变 | B. | 该卫星的线速度不变 | ||
| C. | 该卫星受到的合外力一定在变化 | D. | 该卫星的运动周期一定在变化 |
查看答案和解析>>
科目:高中物理 来源: 题型:解答题
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
| A. | 三个等势面中,a的电势最高 | B. | 质点在Q点时,加速度较小 | ||
| C. | 质点通过P点时动能较大 | D. | 质点通过Q时电势能较小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com