¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©·ÅÉÏÎï¿éµ½¶þÕß´ïµ½¹²Í¬Ëٶȣ¬ÏµÍ³¶¯Á¿ÊغãÁгöµÈʽ£¬ÏµÍ³²úÉúµÄÈÈÁ¿µÈÓÚϵͳ¶¯ÄܵļõÉÙÁ¿ÁгöµÈʽÇó½â
£¨2£©¼ÓÉÏˮƽÏòÓҵĵ糡ºó£¬Îï¿éÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Ð¡³µÔÚĦ²ÁÁ¦×÷ÓÃÏÂÏòÓÒ×öÔȼõËÙÖ±ÏßÔ˶¯£¬µ±E
1È¡×îСֵʱ£¬¶þÕß´ïµ½¹²Í¬ËÙ¶Èv
2ʱÎï¿éÇ¡ºÃµ½´ïС³µµÄ×ó¶Ë£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó½â£®
£¨3£©¼ÓÉÏбÏòÓÒÏ·½µÄµç³¡ºó£¬Îï¿éÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Ð¡³µÄ¦²ÁÁ¦×÷ÓÃÏÂÏòÓÒ×öÔȼõËÙÖ±ÏßÔ˶¯£¬µ±E
2×îСʱ£¬¶þÕߴﹲͬËÙ¶Èv
2ʱÎï¿éÇ¡ºÃµ½´ïС³µµÄ×ó¶Ë£®µ±E
2×î´óʱ£¬¶þÕßÔÚ´ïµ½¹²Í¬ËÙ¶ÈÇ°Îï¿éÒ»¶¨²»»á´ÓС³µÉϵôÏ£¬´ïµ½¹²Í¬ËٶȺóÇ¡ºÃ²»·¢ÉúÏà¶Ô»¬¶¯£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£®
½â´ð£º½â£º£¨1£©·ÅÉÏÎï¿éµ½¶þÕß´ïµ½¹²Í¬Ëٶȣ¬ÏµÍ³¶¯Á¿Êغã
mv
1=2mv¡ä
ϵͳ²úÉúµÄÈÈÁ¿µÈÓÚϵͳ¶¯ÄܵļõÉÙÁ¿£¬ÓÐ
¦Ìmg
=
m
-
?2m
µÃ¦Ì=
=0.5
£¨2£©¼ÓÉÏˮƽÏòÓҵĵ糡ºó£¬Îï¿éÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯
ma
1=qE
1+¦Ìmg
С³µÔÚĦ²ÁÁ¦×÷ÓÃÏÂÏòÓÒ×öÔȼõËÙÖ±ÏßÔ˶¯
ma
2=¦Ìmg
µ±E
1È¡×îСֵʱ£¬¶þÕß´ïµ½¹²Í¬ËÙ¶Èv
2ʱÎï¿éÇ¡ºÃµ½´ïС³µµÄ×ó¶Ë
v
2=a
1t=2v¡ä-a
2t
t-
t=
½âµÃE
1=
£¨3£©¼ÓÉÏбÏòÓÒÏ·½µÄµç³¡ºó£¬Îï¿éÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯
¶ÔÎï¿é£ºma
3=qE
2cos¦È+¦Ì£¨mg+qE
2sin¦È£©
С³µÄ¦²ÁÁ¦×÷ÓÃÏÂÏòÓÒ×öÔȼõËÙÖ±ÏßÔ˶¯
¶ÔС³µ£ºma
4=¦Ì£¨mg+qE
2sin¦È£©
µ±E
2×îСʱ£¬¶þÕߴﹲͬËÙ¶Èv
2ʱÎï¿éÇ¡ºÃµ½´ïС³µµÄ×ó¶Ë
v
3=a
3t=2v¡ä-a
4t
t-
t=
½âµÃE
2min=
µ±E
2×î´óʱ£¬¶þÕßÔÚ´ïµ½¹²Í¬ËÙ¶ÈÇ°Îï¿éÒ»¶¨²»»á´ÓС³µÉϵôÏ£¬´ïµ½¹²Í¬ËٶȺóÇ¡ºÃ²»·¢ÉúÏà¶Ô»¬¶¯
¶ÔÕûÌå2ma=qE
2cos¦È
¶ÔС³µma=¦Ì£¨mg+qE
2sin¦È£©
½âµÃE
2max=
ËùÒÔ
¡ÜE
2¡Ü
£®
´ð£º£¨1£©ÇóÎï¿éÓëС³µÉϱíÃæ¼äµÄ»¬¶¯Ä¦²ÁÒòÊýÊÇ0.5£»
£¨2£©Èô³µµÄ³õËÙ¶ÈΪ2v
£¬ÔÚÎï¿é¸Õ·ÅÉÏС³µµÄͬʱÔÚ¿Õ¼ä¼ÓһˮƽÏòÓÒµÄÔÈÇ¿µç³¡E
1£¬ÎªÁËÈÃÎï¿é²»´Ó³µµÄ×ó¶ËµôÏÂÀ´£¬µç³¡Ç¿¶ÈE
1µÄ×îСֵÊÇ
£»
£¨3£©Èô³µµÄ³õËÙ¶ÈΪ2v
£¬ÔÚÎï¿é¸Õ·ÅÉÏС³µµÄͬʱÔÚ¿Õ¼ä¼ÓÔÈÇ¿µç³¡E
2£¬Æä·½ÏòÔÚÊúֱƽÃæÄÚÓëˮƽ·½Ïò¼Ð½ÇΪ¦È=37°Ð±ÏòÓÒÏ·½£®ÎªÁËÈÃÎï¿éʼÖÕ²»´ÓС³µÉϵôÏÂÀ´£¬µç³¡Ç¿¶ÈE
2µÄ´óС·¶Î§ÊÇ
¡ÜE
2¡Ü
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÔȱäËÙÖ±ÏßÔ˶¯»ù±¾¹«Ê½ºÍϵͳ¶¯Á¿ÊغãµÄÖ±½ÓÓ¦Óã¬ÒªÇóͬѧÃÇÄÜÕýÈ··ÖÎö¸÷¹ý³ÌµÄÊÜÁ¦Çé¿ö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȣ¬½áºÏ¸ôÀë·¨ºÍÕûÌå·¨½âÌ⣬ÄѶȽϴó£®