【题目】如图所示,水平传送带逆时针匀速转动,速度大小为8m/s,A、B为两轮圆心正上方的点,AB=L1=6 m,两边水平面分别与传送带表面无缝对接,弹簧右端固定,自然长度时左端恰好位于B点,现将一小物块与弹簧接触(不栓接),并压缩至图示位置然后释放,已知小物块与各接触面间的动摩擦因数均为μ=0.2,AP=L2=5m,小物块与轨道左端P碰撞无机械能损失,小物块最后刚好能返回到B点减速到零,g=10m/s2,则下列说法正确的是( )
A. 小物块从释放后第一次到B点的过程中,做加速度减小的加速运动
B. 小物块第一次从B点到A点的过程中,一定做匀加速直线运动
C. 小物块第一次到A点时,速度大小一定等于8m/s
D. 小物块离开弹簧时的速度一定满足
【答案】CD
【解析】
小物块从释放后第一次到B点的过程中,先做加速度减小的加速运动,当弹力小于摩擦力时做加速度增大的减速运动,故A错误;设物体到达P点的速度为v,反弹后运动到B点的速度为零,由动能定理得:-μmg(L1+L2)=0-mv2,解得v=2m/s,物体由A到P点过程中,由动能定理得:-μmgL2=mv2-mvA2,解得vA=8m/s,小物块第一次从B点到A点的过程中,先做匀减速直线运动,B错误,C正确;若物体速度较大,一直做匀减速运动,有:-2μmg(L1+L2)=0-mv2,解得v=2m/s;若速度较小,在AB上一直加速,到A点时恰好与带同速,有:L1=vt+at2,8=v+at联立解得v=2 m/s,故小物块离开弹簧时的速度一定满足2m/s≤v≤2m/s,D正确;故选CD。
科目:高中物理 来源: 题型:
【题目】某物理兴趣小组利用小量程的电流表设计了如图所示多用电表的电路图,电流表G的规格是满偏电流Ig=30 mA,内阻Rg= 45Ω。电路中定值电阻R1的阻值为5Ω,电阻箱R2和R3的最大阻值都为999.9Ω。
(1)图中与多用电表A端相连的为_______(填“红”或“黑”)表笔;
(2)将选择开关置于1位置,电流表量程为___________A;(结果保留两位有效数字)
(3)将选择开关置于2位置, 欧姆调零后,使电流表G指针位于表盘中央刻度时,对应被测电阻的阻值为15Ω,则当电流表G指针位于10mA的位置时,电阻刻度盘上应标上_______Ω,电源的电动势为________V。
(4)将选择开关置于3位置,将其改装为量程为150 V的电压表,则电阻箱R3应调整为__________Ω。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图甲所示,两竖直同定的光滑导轨AC、A'C'间距为L,上端连接一阻值为R的电阻。矩形区域abcd上方的矩形区域abA'A内有方向垂直导轨平面向外的均匀分布的磁场,其磁感应强度B1随时间t变化的规律如图乙所示(其中B0、t0均为已知量),A、a两点间的高度差为2gt0(其中g为重力加速度),矩形区域abcd下方有磁感应强度大小为B0、方向垂直导轨平面向里的匀强磁场。现将一长度为L,阻值为R的金属棒从ab处在t=0时刻由静止释放,金属棒在t=t0时刻到达cd处,此后的一段时间内做匀速直线运动,金属棒在t=4t0时刻到达CC'处,且此时金属棒的速度大小为kgt0(k为常数)。金属棒始终与导轨垂直且接触良好,导轨电阻不计,空气阻力不计。求:
(1)金属棒到达cd处时的速度大小v以及a、d两点间的高度差h;
(2)金属棒的质量m;
(3)在0-4t0时间内,回路中产生的焦耳热Q以及d、C两点的高度差H。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】据报道,我国准备在2020年发射火星探测器,并于2021年登陆火星,如图为载着登陆舱的探测器经过多次变轨后登陆火星的轨迹图,其中轨道I、Ⅲ为椭圆,轨道Ⅱ为圆探测器经轨道I、Ⅱ、Ⅲ运动后在Q点登陆火星,O点是轨道 I、Ⅱ、Ⅲ的交点,轨道上的O、P、Q三点与火星中心在同一直线上,O、Q两点分别是椭圆轨道Ⅲ的远火星点和近火星点。已知火星的半径为R,OQ= 4R,轨道Ⅱ上经过O点的速度为v,下列说法正确的有( )
A.在相等时间内,轨道I上探测器与火星中心的连线扫过的面积与轨道Ⅱ上探测嚣与火星中心的连线扫过的面积相等
B.探测器在轨道Ⅱ运动时,经过O点的加速度等于
C.探测器在轨道I运动时,经过O点的速度大于v
D.在轨道Ⅱ上第一次由O点到P点与轨道Ⅲ上第一次由O点到Q点的时间之比是3:2
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,光滑斜面倾角θ=60°,其底端与竖直平面内半径为R的光滑圆弧轨道平滑对接,位置D为圆弧轨道的最低点。两个质量均为m的小球A和小环B(均可视为质点)用L=1.5R的轻杆通过轻质铰链相连,B套在固定竖直光滑的长杆上,杆和圆轨道在同一竖直平面内,杆过轨道圆心,初始时轻杆与斜面垂直。在斜面上由静止释放A,假设在运动过程中两杆不会碰撞,小球通过轨道连接处时无能量损失(速度大小不变)。重力加速度为g。求:
(1)刚释放时,球A的加速度大小;
(2)小球A运动到最低点时的速度大小;
(3)已知小球以运动到最低点时,小环B的瞬时加速度大小为a,求此时小球A受到圆弧轨道的支持力大小。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】某学习兴趣小组为验证机械能守恒定律,设计了如图甲所示的实验装置∶气垫导轨固定放置在倾角为的斜面上,并调节导轨与斜面平行。带遮光条的滑块通过伸直的细线与钩码拴在一起静止在导轨上。测出滑块到光电门的距离L,利用20分度的游标卡尺测出遮光条的宽度d,结果如图乙所示。气垫导轨充气后,钩码竖直向下运动,滑块沿气垫导轨向上运动,遮光条经过光电门的挡光时间为t。
(1)由图乙知遮光条的宽度为_______mm。
(2)若要验证钩码和带有遮光条的滑块组成的系统机械能守恒,还需要测量的物理量是__。
A.钩码的总质量m。
B.带有遮光条的滑块的总质量M
C.滑块由静止滑到光电门的时间t
D.测出滑块和钩码之间绳子的长度s
(3)用题目和第(2)问涉及的字母写出钩码机械能的减少量EA=_____。滑块机被能增加量EB=___实验过程中,若在误差允许的范围内,EA=EB。则验正了系统机械能守恒。
(4)改变滑块释放的初始位置,得出多组数据,画出图,则图像的斜率k=___。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】在如图所示的理想变压器供电线路中,原线圈接在有效值恒定的交流电源上,副线圈接有两个灯泡,电流表、电压表均为理想电表。开关S原来是断开的,现将开关S闭合,则( )
A.A1的示数增大,A2的示数增大
B.A1的示数不变,A2的示数增大
C.V1的示数减小,V2的示数减小。
D.V1的示数不变,V2的示数减小
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】滑板运动是一项刺激的运动,深受青少年的喜欢,某次比赛中部分赛道如左下图所示.现将赛道简化为如右下图所示的模型:平台A和平台BC相距h=3.2 m,粗糙水平轨道DE与光滑圆弧形轨道CD、EF相切于D、E点.运动员与滑板一起(可看作质点)从A点以速度v0水平飞出,恰好从C点无能量损失地沿着圆弧切线进入CD轨道,滑过DE冲上EF轨道,然后返回,恰好到C点速度为零.已知人和滑板总质量为m=60 kg,光滑圆弧CD对应的圆心角θ=53°,圆弧形轨道半径均为R=4 m.不计空气阻力,g取10 m/s2,sin 53°=0.8,cos 53°=0.6.求:
(1)运动员的初速度v0;
(2)运动员第一次经过D点时对圆弧轨道的压力大小;
(3)运动员从A点开始飞出到返回C点的过程中机械能的损失量.
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】开普勒第三定律指出:所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即,其中a表示椭圆轨道半长轴,T表示公转周期,比值c是一个对所有行星都相同的常量。牛顿把该定律推广到宇宙中一切物体之间,提出了万有引力定律:
(1)开普勒第三定律对于轨迹为圆形和直线的运动依然适用。圆形轨迹可以认为中心天体在圆心处,半长轴为轨迹半径。直线轨迹可以看成无限扁的椭圆轨迹,此时中心天体在轨迹端点,半长轴为轨迹长度的。已知:某可视为质点的星球质量为M,引力常量为G。一物体与星球的距离为r。该物体在星球引力作用下运动,其他作用力忽略不计。
a.若物体绕星球作匀速圆周运动,请你推导该星球的引力系统中常量c的表达式;
b.若物体由静止开始做直线运动。求物体到达星球所经历的时间;
(2)万有引力和静电引力是自然界中典型的两种引力,库仑定律和万有引力定律均遵循“平方反比”规律,类比可知,带电粒子在电场中的运动也遵循开普勒第三定律。两个点电荷带电量分别为+Q和-Q,质量均为m,从相距为2l的两点由静止释放,在静电引力的作用下运动,其他作用力忽略不计。静电力常量为k。求两点电荷从开始释放到相遇的时间。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com