精英家教网 > 高中物理 > 题目详情
如图甲所示,两根足够长的平行光滑金属导轨MN、PQ被固定在水平面上,导轨间距l=0.6m,两导轨的左端用导线连接电阻
R
 
1
及理想电压表,电阻r=2Ω的金属棒垂直于导轨静止在AB处;右端用导线连接电阻
R
 
2
,已知
R
 
1
=2Ω,
R
 
2
=1Ω,导轨及导线电阻均不计.在矩形区域CDEF内有竖直向上的磁场,CE=0.2m,磁感应强度随时间的变化如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场运动过程中电压表的示数始终保持不变.求:
精英家教网(1)t=0.1s时电压表的读数;
(2)恒力F的大小;
(3)从t=0时刻到金属棒运动出磁场过程中整个电路产生的热量.
分析:(1)由题,当金属棒运动到尚离磁场边界CD较远的某一位置时,电压表示数变为零,此后磁场的磁感应强度保持不变.金属棒在0-0.2s的运动时间内,有E=
△?
△t
=
△B
△t
ld.求出电路中的总电阻,根据串联电路的特点求解电压表的读数.
(2)金属棒进入磁场后,由于电压表的读数不变,电路中总电流为I′=
U
R1
+
U
R2
,金属棒所受的安培力为FA=BI′l,此时安培力与恒力平衡.可求得恒力F.
(3)金属棒在0-0.2s的运动时间内产生的热量Q=
E2
R
t.金属棒进入磁场后,电路的总电阻为R′=
R1R2
R1+R2
+r,感应电动势为E′=IR′,由E′=Blv求得v,则可求出金属棒通过磁场的时间t′=
d
v
.此过程中电路产生的热量为Q′=E′I′t′,故得到金属棒从AB运动到EF的过程中整个电路产生的热量为Q=Q+Q′.
解答:解:(1)金属棒在0-0.2s的运动时间内,有:E=
△?
△t
=
△B
△t
ld=
1
0.2
×0.6×0.2=0.6V
V=0.6V金属棒与电阻R1的并联电阻为:R=
R1r
r+R1
=1Ω
电路中总电阻为:R=
R1r
r+R1
+R2=2Ω
则电压表的读数为:U=
R 并
R

得:E=
1
2
×0.6V=0.3V
(2)金属棒进入磁场后,通过它的电流为:
I′=
U
R1
+
U
R2
=
0.3
2
+
0.3
1
(A)=0.45A
金属棒所受的安培力为:FA=BI′l=1×0.45×0.6N=0.27N
由于金属棒进入磁场后电压表读数保持不变,所以金属棒做匀速运动.则有:
F=FA=0.27N
(2)金属棒在0-0.2s的运动时间内,产生的热量为:Q=
E2
R
t=
0.62
2
×0.2J=0.0.36J
金属棒进入磁场后,电路的总电阻为:R′=
R1R2
R1+R2
+r=
8
3
Ω
感应电动势为:E′=IR′=1.2V
由E′=Blv得:v=
E′
Bl
=
1.2
1×0.6
m/s=2m/s
则金属棒通过磁场的时间为:t′=
d
v
=
0.2
2
s=0.1s
则此过程中电路产生的热量为:Q′=E′I′t′=1.2×0.45×0.1J=0.054J
故金属棒从AB运动到EF的过程中整个电路产生的热量为:Q=Q+Q′=0.090J.
答:(1)t=0.1s时电压表的示数是0.3V.
(2)恒力F的大小是0.27N.
(3)金属棒从AB运动到EF的过程中整个电路产生的热量是0.090J.
点评:本题是法拉第电磁感应定律、欧姆定律、安培力等知识的综合应用,要搞清电路的连接方式,分析金属棒的运动过程.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值R=1Ω的电阻连接;导轨上放一质量m=0.5kg的金属杆,金属杆与导轨垂直,接触良好,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小B=0.5T的匀强磁场中,现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.
求:
(1)拉力F的大小及电路的发热功率;
(2)在0~10s内,通过电阻R上的电量.

查看答案和解析>>

科目:高中物理 来源: 题型:

如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.(取重力加速度g=10m/s2)求:
(1)t=10s时拉力的大小及电路的发热功率.
(2)在0~10s内,通过电阻R上的电量.

查看答案和解析>>

科目:高中物理 来源: 题型:

如图甲所示,两根足够长的平行导轨处在与水平方向成θ角的斜面上,θ=370,导轨电阻不计,间距L=0.3m.在斜面上加有磁感应强度B=1T、方向垂直于导轨平面向上的匀强磁场.导轨底端接一个阻值R=1Ω的电阻.质量m=1kg、电阻r=2Ω的金属棒ab横跨在平行导轨间,棒与导轨间的动摩擦因数μ=0.5,金属棒从距底端高为h1=2.0m处以平行于导轨向上的初速度v0=10m/s上滑,滑至最高点时高度为h2=3.2m,sin37°=0.6,cos37°=0.8,取g=10m/s2
(1)求ab棒上升至最高点的过程中,通过电阻R的电量q和电阻R产生的焦耳热Q.
(2)若ab棒固定在导轨上的初始位置,磁场按图乙所示规律变化(2.5×10-2~7.5×10-2s内是正弦规律变化),电阻R在一个周期内产生的焦耳热为Q=5J,取π2=10,求B0

查看答案和解析>>

科目:高中物理 来源: 题型:

如图甲所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.用与导轨平行且向上的恒定拉力F作用在金属杆上,金属杆ab沿导轨向上运动,最终将做匀速运动.当改变拉力F的大小时,相对应的匀速运动速度v也会改变,v和F的关系如图乙所示.
(1)金属杆ab在匀速运动之前做什么运动?
(2)若m=0.25kg,L=0.5m,R=0.5Ω,取重力加速度g=10m/s2,试求磁感应强度B的大小及θ角的正弦值sin θ.

查看答案和解析>>

科目:高中物理 来源: 题型:

如图甲所示,两根足够长,电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg,阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触,整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示,为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F,g=10m/s2求:
(1)当t=1s时,外力F的大小和方向;
(2)4s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距207.90cm,求棒下滑该距离过程中电阻R上产生的焦耳热.

查看答案和解析>>

同步练习册答案