精英家教网 > 高中物理 > 题目详情
18.竖直放置的固定绝缘光滑轨道由半径分别为R的$\frac{1}{4}$圆弧MN和半径为r的半圆弧NP拼接而成(两段圆弧相切于N点),小球带正电,质量为m,电荷量为q.已知将小球由M点静止释放后,它刚好能通过P点,不计空气阻力.下列说法正确的是(  )
A.若加竖直向上的匀强电场E(Eq<mg),则小球能通过P点
B.若加竖直向下的匀强电场,则小球不能通过P点
C.若加垂直纸面向里的匀强磁场,则小球不能通过P点
D.若加垂直纸面向外的匀强磁场,则小球不能通过P点

分析 应用动能定理求出小球到达P点的速度,小球恰好通过P点时轨道对球的作用力恰好为零,应用动能定理与牛顿第二定律分析答题.

解答 解:设M、P间的高度差为h,小球从M到P过程由动能定理得:mgh=$\frac{1}{2}$mv2-0,v=$\sqrt{2gh}$,
小球恰好通过P点,重力提供向心力,由牛顿第二定律得:mg=m$\frac{{v}^{2}}{r}$,r=2h;
A、若加竖直向下的匀强电场E(Eq<mg),小球从M到P过程由动能定理得:(mg-qE)h=$\frac{1}{2}$mv′2-0,
解得:v′=$\sqrt{\frac{2(mg-qE)h}{m}}$,则:m$\frac{v{′}^{2}}{r}$=mg-qE,小球恰好通过P点,故A正确;
B、若加竖直向上的匀强电场,小球从M到P过程由动能定理得:(mg+qE)h=$\frac{1}{2}$mv′2-0,
解得:v′=$\sqrt{\frac{2(mg+qE)h}{m}}$,则:m$\frac{v{′}^{2}}{r}$=mg+qE,小球恰好通过P点,故B错误;
C、若加垂直纸面向里的匀强磁场,小球到达P点的速度v不变,洛伦兹力竖直向下,则:qvB+mg>m$\frac{{v}^{2}}{r}$,小球不能通过P点,故C正确;
D、若加垂直纸面向外的匀强磁场,小球到达P点的速度v不变,洛伦兹力竖直向上,则:mg-qvB<m$\frac{{v}^{2}}{r}$,小球对轨道有压力,小球能通过P点,故D错误;
故选:AC.

点评 本题是一道力学综合题,知道小球通过P点的临界条件是:的、轨道对小球的支持力恰好为零,分析清楚小球的运动过程,应用动能定理与牛顿第二定律可以解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

12.如图所示,质量为50Kg的运动员在单杠上做引体向上运动,当运动员对单杠竖直向下的拉力为600N时,此时运动员的运动情况是(  )
A.一定在匀速下降B.一定在加速下降C.可能在加速上升D.可能在减速上升

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

9.如图所示,是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,由图可知,该金属的截止频率为4.27×1014Hz,普朗克常量为6.5×10-34j•s.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.2011年7月23日晚,甬温线永嘉站至温州南站间,北京南至福州D 301次列车与杭州至福州南D3115次列车发生追尾事故,造成动车组运行以来的特重大铁路交通事故.事故发生前D3115次动车组正以20km/h的目视行车速度在发生事故的铁路上匀速行驶,而D301次动车组驶离永嘉站后,2分钟车速达到216km/h,便开始匀速行驶.不幸的是几分钟后就发生了追尾事故.
(1)如果认为D301次动车组以恒定加速度从静止驶离永嘉车站,求D301的启动加速度和加速距离分别是多少?
(2)已知动车组紧急制动的加速度为3m/s2,D301正常行驶后,为了避免事故发生,应至少距离D3115多远开始刹车才有可能避免事故发生?(20km/h≈5.6m/s)

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.下列说法正确的是(  )
A.放射性元素的半衰期随温度升高而减小
B.光和电子都具有波粒二象性
C.α粒子散射实验可以估算出原子核的数量级为10-10m
D.太阳辐射的能量主要来自太阳内部的热核反应
E.比结合能越大,原子中核子结合的越牢固,原子核越稳定

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.磁悬浮列车的运动原理如图所示,在水平面上有两根很长的平行直导轨,导轨间有与导轨垂直且方向相反的匀强磁场B1和B2,B1和B2相互间隔,导轨上有金属框abcd.当磁场B1和B2同时以恒定速度沿导轨向右匀速运动时,金属框也会沿导轨向右运动.已知两导轨间距L1=0.4m,两种磁场的宽度均为L2,L2=ab,B1=B2=B=1.0T.金属框的质量m=0.1kg,电阻R=2.0Ω.设金属框受到的阻力与其速度成正比,即f=kv,比例系数k=0.08kg/s.求:

(1)若金属框达到某一速度时,磁场停止运动,此后某时刻金属框的加速度大小为a=6.0m/s2,则此时金属框的速度v1多大?
(2)若磁场的运动速度始终为v0=5m/s,在线框加速的过程中,某时刻线框速度v′=2m/s,求此时线框的加速度a′的大小
(3)若磁场的运动速度始终为v0=5m/s,求金属框的最大速度v2为多大?此时装置消耗的功率为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.一块电流表的内阻大约是几百欧,某同学用如图所示的电路测量其内阻和满偏电流,部分实验步骤如下:
①选择器材:两个电阻箱、两节干电池(每节电动势为1.5V,内阻不计)、两个单刀单掷开关和若干导线;
②按如图所示的电路图连接好器材,断开开关S1、S2,将电阻箱1 的电阻调至最大;
③闭合开关S1,调节电阻箱1,并同时观察电流表指针,当指针处于满偏刻度时,读取电阻箱1的阻值为500Ω;
④保持电阻箱1的电阻不变,再闭合开关S2,只调节电阻箱2,并同时观测电流表指针,当指针处于半偏刻度时,读取电阻箱2 的阻值为250Ω,通过分析与计算可知:
(1)电流表内阻的测量值RA=500Ω;电流表的满偏电流值Ig=3mA;
(2)该同学对此电流表进行改装,使改装后的电流表量程为3A,则改装后的电流表的内阻RA′=0.5Ω.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示,正方形绝缘光滑水平台面WXYZ边长l=1.8m,距地面h=0.8m.平行板电容器的极板CD间距d=0.1m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相交处有一小孔.电容器外的台面区域内有磁感应强度B=1T、方向竖直向上的匀强磁场.电荷量q=5×10-13 C的微粒静止于W处,在CD间加上恒定电压U=2.5V,板间微粒经电场加速后由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面.在微粒离开台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之相遇.假定微粒在真空中运动,极板间电场视为匀强电场,滑块视为质点,滑块与地面间的动摩擦因数μ=0.2,取g=10m/s2
(1)求微粒在极板间所受电场力的大小并说明两板的极性;
(2)求由XY边界离开台面的微粒的质量范围;
(3)若微粒质量m0=1×10-13 kg,求滑块开始运动时所获得的速度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.如图所示为某制药厂自动生产流水线上的一部分装置示意图,已知传送带与水平面的夹角为α,O为漏斗,要使药品从漏斗出来经光滑槽送到传送带上,设滑槽与竖直方向的夹角为θ,则θ为多大时可使药片滑到传送带上的时间最短?

查看答案和解析>>

同步练习册答案