精英家教网 > 高中物理 > 题目详情

【题目】遥控电动玩具车的轨道装置如图所示,轨道ABCDEF中水平轨道AB段和BD段粗糙,AB=BD=2.5R,小车在ABBD段无制动运行时所受阻力是其重力的0.02倍,轨道其余部分摩擦不计。斜面部分DE与水平部分BD、圆弧部分EF均平滑连接,圆轨道BC的半径为R,小段圆弧EF的半径为4R,圆轨道BC最高点C与圆弧轨道EF最高点F等高。轨道右侧有两个与水平轨道ABBD等高的框子MN,框M和框N的右边缘到F点的水平距离分别为R2R。额定功率为P,质量为m可视为质点的小车,在AB段从A点由静止出发以额定功率行驶一段时间tt未知)后立即关闭电动机,之后小车沿轨道从B点进入圆轨道经过最高点C返回B点,再向右依次经过点DEF,全程没有脱离轨道,最后从F点水平飞出,恰好落在框N的右边缘。

1)求小车在运动到F点时对轨道的压力;

2)求小车以额定功率行驶的时间t

3)要使小车进入M框,小车采取在AB段加速(加速时间可调节),BD段制动减速的方案,则小车在不脱离轨道的前提下,在BD段所受总的平均制动力至少为多少。

【答案】1mg,方向竖直向下;(2;(3mg

【解析】

1)小车平抛过程,有:2R=vFt

2R=gt2

由①②联立解得:vF=

F点,对小车由牛顿第二定律得:mgFN=m

由③④得:FN=mg

由牛顿第三定律得小车对轨道的压力大小为mg,方向竖直向下。

2)小车从静止开始到F点的过程中,由动能定理得:

Pt0.02mg5Rmg2R=mvF2

由③⑤得:t=

3)平抛过程有: R=vFt2R=gt2

要使小车进入M框,小车在F点的最大速度为vF=

小车在C点的速度最小设为vC,则有:mg=m

设小车在BD段所受总的总的平均制动力至少为f,小车从C点运动到F点的过程中,由动能定理得:

-f2.5R=mvF2-mvC2

由⑥⑦⑧得:f=mg

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

【题目】如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K关闭,汽缸内上下两部分气体的压强均为p0.现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g.求流入汽缸内液体的质量.

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】小王将手中没有喝完的大半瓶可乐罐水平扔向某垃圾桶,可乐罐的轨迹如图。为了能把可乐罐扔进垃圾桶,小王可以(  )

A.只减小扔可乐罐的水平初速度

B.只增加水平扔出可乐罐时的高度

C.只减小水平扔出可乐罐时人与垃圾桶的水平距离

D.以上说法均不可能实现

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图甲所示的装置叫做阿特伍德机,是英国数学家和物理学家阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律。某同学对该装置加以改进后用来验证机械能守恒定律,如图乙所示。

1)实验时,该同学进行了如下操作:

①将质量均为mA 的含挡光片,B 的含挂钩)的重物用绳连接后,跨放在定滑轮上,处于静止状态,测 量出 _____________(选填A 的上表面A 的下表面挡光片中心)到光电门中心的竖直距离 H

②在 B 的下端挂上质量为m 的物块 C,让系统(重物 A、B 以及物块 C)由静止开始运动,光电门记 录挡光片挡光的时间为t

测出挡光片的宽度 d,计算有关物理量,验证机械能守恒定律。

2)从开始到挡光片通过光电门的过程中,系统重力势能减小量为 ____________(已知重力加速度为 g)。系统动能增加量为 _____________

3)如果系统机械能守恒,此过程中 A 应该匀加速上升,其加速度大小 a = _____________ 绳子对 A 的拉力大小 F = _____________

4)提出减小该实验系统误差的措施 ______________(写一条即可)。

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】一辆汽车从静止开始匀加速开出,然后保持匀速运动,最后匀减速运动,直到停止.下表给出了不同时刻汽车的速度:

时刻/s

1.0

2.0

3.0

5.0

7.0

9.5

10.5

速度/ms-1

3

6

9

12

12

9

3

(1)求汽车做加速运动时的加速度和减速运动时的加速度?

(2)汽车从开出到停止共经历的时间是多少?

(3)汽车全过程运动的距离是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】离子发动机是利用电能加速工质(工作介质)形成高速射流而产生推力的航天器发动机。其原理如图所示,其原理如下:首先系统将等离子体经系统处理后,从下方以恒定速率v1向上射入有磁感应强度为B1、方向垂直纸面向里的匀强磁场的区域I内,栅电极MNPQ间距为d。当栅电极MNPQ间形成稳定的电场后,自动关闭区域I系统(包括进入其中的通道、匀强磁场B1)。区域Ⅱ内有垂直纸面向外,磁感应强度大小为B2,放在A处的中性粒子离子化源能够发射任意角度,但速度均为v2的正、负离子,正离子的质量为m,电荷量为q,正离子经过该磁场区域后形成宽度为D的平行粒子束,经过栅电极MNPQ之间的电场中加速后从栅电极PQ喷出,在加速正离子的过程中探测器获得反向推力(不计各种粒子之间相互作用、正负离子、等离子体的重力,不计相对论效应)。求:

1)求在A处的正离子的速度大小v2

2)正离子经过区域I加速后,离开PQ的速度大小v3

3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,某人用托里拆利管做测定大气压强的实验时,由于管内漏进了空气,测得管内汞柱的高度仅为70cm,但当时的实际大气压强为一个标准大气压(相当于76厘米高的汞柱产生的压强)。今采用下述哪种方法,可使管内、外汞面的高度差大于70cm

A.把托里拆利管逐渐倾斜(管子露出部分长度不变)

B.把托里拆利管慢慢向上提,但下端不离开汞槽

C.保持装置不动,往汞槽内加汞,以增大压强

D.整个装置竖直向上做加速运动

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】道路千万条,安全第一条。一辆汽车在平直公路上以10m/s的速度匀速行驶,驾驶员发现前方 30m 处的斑马线上有行人,驾驶员立即刹车使车做匀减速直线运动停在斑马线前,已知行人还需 10s 才能通过斑马线,则刹车后汽车的加速度大小至少为(

A.1m/s2

B.1.5m/s2

C.1.67m/s2

D.2.33m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,一半径R=1m的圆盘水平放置,在其边缘E点固定一小桶(可视为质点),在圆盘直径DE的正上方平行放置一水平滑道BC,滑道右端C点与圆盘圆心O在同一竖直线上,且竖直高度h=1.25m。AB为一竖直面内的光滑圆弧轨道,半径r=0.45m,且与水平滑道相切与B点。一质量m=0.2kg的滑块(可视为质点)从A点以某一初速度释放,当滑块经过B点时,对B点压力为6N,恰在此时,圆盘从图示位置以一定的角速度绕通过圆心的竖直轴匀速转动,最终物块由C点水平抛出,恰好落入圆盘边缘的小桶内。已知滑块与滑道BC间的动摩擦因数。(取)求:

(1)滑块到达B点时的速度;

(2)水平滑道BC的长度;

(3)圆盘转动的角速度应满足的条件.

查看答案和解析>>

同步练习册答案