解:(1)设力作用时物体的加速度为a
1,对物体进行受力分析,
由牛顿第二定律有:F-mgsinθ-μmgcosθ=ma
1撤去力后,设物体的加速度为a
2,
由牛顿第二定律有:mgsinθ+μmgcosθ=ma
2由图象可得a
1=20m/s
2; a
2=10m/s
2代入解得F=30N; μ=0.5
故斜面与物体间的动摩擦因数为0.5,拉力大小为30N;
(2)3s末物体速度减为零,之后物体下滑做匀加速直线运动,
根据牛顿第二定律,有:mgsin37°-f=ma
3解得:a
3=2m/s
2由速度时间公式,得到再过3s,有:v=a
3t=6m/s
故物体6s末速度大小为6m/s.方向与初速度方向相反即沿斜面向下.
图象如下图所示.
(3)速度时间图象与时间轴包围的面积表示位移,故:前3s的位移为:x=
;
下降过程,根据位移时间关系公式,有:
,解得
;
故返回出发点的速度为:
;
答:(1)物体与斜面间的动摩擦因数为0.5,拉力F的大小为30N;
(2)t=6s时物体速度为6m/s,t=6s内物体运动的v-t图象如图所示;
(3)物体返回出发点的速度大小约为11.0m/s.
分析:(1)根据图象可以求出匀加速直线运动和匀减速直线运动的加速度大小,根据牛顿第二定律列出匀加速运动和匀减速运动的力学方程,F-mgsinθ-μmgcosθ=ma
1,mgsinθ+μmgcosθ=ma
2,联立两方程求出动摩擦因数;
(2)先通过图象得到3s末速度为零,然后求出3s到6s物体的加速度,再根据速度时间关系公式求解6s末速度;
(3)先求解出前3s的位移,即上滑的位移;然后对下降过程运动位移时间关系公式列式求解下滑的时间.
点评:题关键受力分析后,根据牛顿第二定律,运用正交分解法求解出各个运动过程的加速度,然后结合运动学公式列式求解.