精英家教网 > 试题搜索列表 >(2012?滨州)求1+2+22+23+

(2012?滨州)求1+2+22+23+答案解析

科目:czsx 来源: 题型:

(2012•滨州)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为(  )

查看答案和解析>>

科目:czsx 来源: 题型:

填空:
(1)21-20=
1
1
=2(  );22-21=
2
2
=2(  );23-22=
4
4
=2(  )
(2)请用字母表示第n个等式,并验证你的发现.
(3)利用(2)中你的发现,求20+21+22+23+…+219+220的值.

查看答案和解析>>

科目:czsx 来源: 题型:

观察下列各式:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1,
(1)根据前面各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=
xn+1-1
xn+1-1
(其中n为正整数).
(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.

查看答案和解析>>

科目:czsx 来源: 题型:

求1+2+22+23+…+22012的值,
可令S=1+2+22+23+…+22012
则2S=2+22+23+24+…+22013
因此2S-S=22013-1.
仿照以上推理,求1+5+52+53+…+52012的值.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
   2S=2+22+23+24+25+…+22013+22014
   将下式减去上式得2S-S=22014-1
   即S=22014-1
   即1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•黄陂区模拟)为求1+21+22+23…+22012的值,可令S=1+21+22+23…+22012,则2S=21+22+23+24…+22013,因此2S-S=S=22013-1.仿照以上推理,计算出1+31+32+33+…+32012的值是
32013-1
2
32013-1
2

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,则2S=2+22+23+24+…+22008+22009+22010,因此2S-S=22010+1,所以1+2+22+23+…+22008=22010+1.仿照以上推理计算出1+5+52+53+…52009的值是(  )
A、52010+1
B、52010-1
C、
52010+4
4
D、
52010+1
4

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32010的值是
S=
32011-1
2
S=
32011-1
2

查看答案和解析>>

科目:czsx 来源: 题型:

求1+21+22+23…+22013的值,可令S=1+21+22+23…+22013,则2S=21+22+23+24+…+22014,因此2S-S=S=22014-1.仿照以上推理,计算出1+31+32+33+…+32012+32013的值是
1
2
(32014-1)
1
2
(32014-1)

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•平南县二模)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012=
52013-1
4
52013-1
4

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52009的值是(  )
A、52009-1
B、52010-1
C、
52009-1
4
D、
52010-1
4

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S-S=22013-1,所以1+22+23+…+22012=22013-1.仿照以上方法计算1+5+52+53+…+52012的值是(  )

查看答案和解析>>

科目:czsx 来源: 题型:

为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52013的值是(  )

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22010的值,可令S=1+2+22+23+…+22010,则2S=2+22+23+24+…+22011,因此2S-S=22011-1,所以1+2+22+23+…+22010=22011-1,仿照以上推理,计算1+5+52+53+…+52010的值可得
1
4
(52011-1)
1
4
(52011-1)

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1仿照以上推理,计算1+5+52+53+…+52009的值.

查看答案和解析>>

科目:czsx 来源: 题型:

阅读理解并解答:
为了求1+2+22+23+24+…+22009的值,可令S=1+2+22+23+24+…+22009
则2S=2+22+23+24+…+22009+22010,因此2S-S=(2+22+23+…+22009+22010)-(1+2+22+23+…+22009)=22010-1.
所以:S=22010-1.即1+2+22+23+24+…+22009=22010-1.
请依照此法,求:1+4+42+43+44+…+42010的值.

查看答案和解析>>

科目:czsx 来源: 题型:

阅读下列材料:
为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
则 2S=2+22+23+…+22012②,
②-①得  2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,请计算:1+4+42+43…+42011

查看答案和解析>>

科目:czsx 来源: 题型:

为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s-s=22013-1,所以1+2+22+23+…+22012=22013-1.仿照以上推理,计算1+5+52+53+…+52013的值.

查看答案和解析>>

科目:czsx 来源: 题型:

16、求1+2+22+23+…+22011的值.

查看答案和解析>>

科目:czsx 来源: 题型:

观察、归纳:
(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;

则(x-1)(xn+xn-1+…+x+1)=
xn+1-1
xn+1-1

求1+2+22+23+24+…+263=
264-1
264-1

查看答案和解析>>