精英家教网 > 试题搜索列表 >若一元一次方程x的平方-bx+c=0的二次项系数、一次相函数、常数项之和为零

若一元一次方程x的平方-bx+c=0的二次项系数、一次相函数、常数项之和为零答案解析

科目:czsx 来源:数学教研室 题型:022

一元二次方程的解法

①直接开平方法:对于一元二次方程x2aa0),因为xa的平方根,所以x___________,即x1___________x2___________,这种解一元二次方程的方法叫做直接开平方法.

②配方法:将一元二次方程ax2bxc0a0)配成___________的形式后,当b24ac___________时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.

③公式法:应用一元二次方程ax2bxc0a0)的求根公式x___________(b24ac0),这种解一元二次方程的方法叫做公式法.

④因式分解法:若一元二次方程ax2bxc0(a≠0)的左边是关于x的二次三项式易于分解成两个关于x的一次因式乘积的形式时,则方程ax2bxc=0可变形为___________,分别令两个一次因式等于0,得两个关于x的一次方程___________和___________,通过解这两个一次方程,就可得原方程的解.这种解一元二次方程的方法叫做因式分解法.

 

查看答案和解析>>

科目:czsx 来源: 题型:

若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是(  )

查看答案和解析>>

科目:czsx 来源: 题型:

25、观察下列方程:
①2x2-27x+91=0;②2x2-23x+66=0;③2x2-19x+45=0;④2x2-15x+28=0;⑤2x2-11x+15=0;…
上面每一个方程的二次项系数都是2,各个方程的解都不同,但每个方程b2-4ac的值均1.
(1)请你写出两个方程,使每个方程的二次项系数都是2,且每个方程的b2-4ac的值也都是1,但每个方程的解与已知的5个方程的解都不相同.
(2)对于一般形式的一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),能否作出一个新方程ax2+b′x+c′=0,使b2-4ac与b′2-4ac′相等?若能,请写出所作的新的方程(b′,c′需用a,b,c表示),并说明理由;若不能,也请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

若一元一次方程mx-6=x的解是自然数,则满足条件的整数m的值为
 

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

若一元一次方程ax+b=0的解为正数,则(  )
A、a,b同号B、a,b异号C、b大于0D、a,b都是有理数

查看答案和解析>>

科目:czsx 来源:2007-2008学年江西省鹰潭市贵溪二中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

观察下列方程:
①2x2-27x+91=0;②2x2-23x+66=0;③2x2-19x+45=0;④2x2-15x+28=0;⑤2x2-11x+15=0;…
上面每一个方程的二次项系数都是2,各个方程的解都不同,但每个方程b2-4ac的值均1.
(1)请你写出两个方程,使每个方程的二次项系数都是2,且每个方程的b2-4ac的值也都是1,但每个方程的解与已知的5个方程的解都不相同.
(2)对于一般形式的一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),能否作出一个新方程ax2+b′x+c′=0,使b2-4ac与b′2-4ac′相等?若能,请写出所作的新的方程(b′,c′需用a,b,c表示),并说明理由;若不能,也请说明理由.

查看答案和解析>>

科目:czsx 来源:2010-2011学年四川省内江市隆昌三中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-,x1x2=.∵,∴=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

观察下列方程:
①2x2-27x+91=0;②2x2-23x+66=0;③2x2-19x+45=0;④2x2-15x+28=0;⑤2x2-11x+15=0;…
上面每一个方程的二次项系数都是2,各个方程的解都不同,但每个方程b2-4ac的值均1.
(1)请你写出两个方程,使每个方程的二次项系数都是2,且每个方程的b2-4ac的值也都是1,但每个方程的解与已知的5个方程的解都不相同.
(2)对于一般形式的一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),能否作出一个新方程ax2+b′x+c′=0,使b2-4ac与b′2-4ac′相等?若能,请写出所作的新的方程(b′,c′需用a,b,c表示),并说明理由;若不能,也请说明理由.

查看答案和解析>>

科目:czsx 来源:新教材完全解读 九年级数学 (下册) (配华东师大版新课标) 华东师大版新课标 题型:044

已知c<0,且满足,抛物线y=ax2+bx+c经过正比例函数y=-4x与反比例函数的图象的交点.

(1)求抛物线的关系式;

(2)若抛物线顶点在直线y=mx+n上,此直线与x轴、y轴分别交于点A,B,且OA∶OB=1∶2,求作一个以m和n为根的二次项系数为1的一元二次方程.

查看答案和解析>>

科目:czsx 来源:新教材完全解读 九年级数学 下册(配北师大版新课标) 北师大版新课标 题型:044

已知c<0,且满足=|2c+1|,抛物线y=ax2+bx+c经过正比例函数y=-4x与反比例函数y=-的图象的交点.

(1)求抛物线的解析式;

(2)若抛物线的顶点在直线y=mx+n上,此直线与x轴、y轴分别交于点A,B,且OA∶OB=1∶2,求作一个以m和n为根的二次项系数为1的一元二次方程.

查看答案和解析>>

科目:czsx 来源:不详 题型:单选题

若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是(  )
A.0B.1C.-1D.±1

查看答案和解析>>

科目:czsx 来源:数学教研室 题型:022

(1)方程x224x两根之和是_________,两根之积是_________

(2)如果一元二次方程8x2-(m1xm70有一个根是0,则m_________;

(3)已知方程x2mxn0两根互为相反数,则m__________0n__________0;

(4)已知方程x24xk20两根之积是–3,则k_________;

(5)已知方程9x22mx80两根之和等于2,则m_________;

(6)已知?ot匠?/span>x23xm0的一个根是另一个根的2倍,则m_________;

(7)若方程x25xm0两根之差的平方为16,则m_________

(8)若两数的和为-5,积为-6,则此两数为__________________

(9)若关于x的二次三项式x2ax2a3是完全平方式,则a的值为________________

(10)若方程3x2pxq0的两根的倒数之和是-2,且3p2q=-8,则pq的值为_____________

(11)已知一个一元二次方程的两根分别比方程x22x30的两根大1,则此方程为______________

(12)x1x2是方程x213xm0的两个根,且x14x22,则m__________________

 

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-数学公式,x1x2=数学公式.∵数学公式数学公式,∴数学公式=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:czsx 来源:2012-2013学年福建省龙岩市武平县十方中学九年级(上)第一次月考数学试卷(解析版) 题型:选择题

若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是( )
A.0
B.1
C.-1
D.±1

查看答案和解析>>

科目:czsx 来源:四川省月考题 题型:解答题

阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2
那么由根与系数的关系得:x1+x2=﹣,x1x2=

=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).
于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).
(1)请用上面的方法将多项式4x2+8x﹣1分解因式.
(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:单选题

若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是


  1. A.
    0
  2. B.
    1
  3. C.
    -1
  4. D.
    ±1

查看答案和解析>>

科目:czsx 来源: 题型:

已知关于X的的一元一次方程,(3a+2b)x2+bx+a=0有唯一解,则X=_____.

查看答案和解析>>

科目:czsx 来源: 题型:单选题

若一元一次方程ax+b=0的解为正数,则


  1. A.
    a,b同号
  2. B.
    a,b异号
  3. C.
    b大于0
  4. D.
    a,b都是有理数

查看答案和解析>>