精英家教网 > 试题搜索列表 >a,o,oc,a,b,oc,bc,ac.ob

a,o,oc,a,b,oc,bc,ac.ob答案解析

科目:czsx 来源: 题型:

(本题10分)如图,已知A是⊙O上一点半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若∠ACD=45°,OC=2,求弦AD的长。

查看答案和解析>>

科目:czsx 来源:2011-2012学年人教版九年级第一学期期末考试数学卷 题型:解答题

(本题10分)如图,已知A是⊙O上一点半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若∠ACD=45°,OC=2,求弦AD的长。

查看答案和解析>>

科目:czsx 来源: 题型:

(本题10分)如图,已知A是⊙O上一点半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.

 (1)试判断直线AB与⊙O的位置关系,并说明理由;

 (2)若∠ACD=45°,OC=2,求弦AD的长。

 

 

查看答案和解析>>

科目:czsx 来源:2012届人教版九年级第一学期期末考试数学卷 题型:选择题

(本题10分)如图,已知A是⊙O上一点半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.

 (1)试判断直线AB与⊙O的位置关系,并说明理由;

 (2)若∠ACD=45°,OC=2,求弦AD的长。

 

 

查看答案和解析>>

科目:czsx 来源: 题型:单选题

曲线y=数学公式与x轴围成的面积(即图中阴影部分的面积)是多少?下面是课堂教学上同学们的看法,其中最佳答案是


  1. A.
    曲线不是圆弧,我们没有学过相关的方法,求不出来
  2. B.
    既然老师出了这道题,肯定是我们能求出来的,哪个神仙来做
  3. C.
    我们可以试一试,也许用面积分割的方法能求出来,我猜是4
  4. D.

    我想出来了,是4;连接OA、OB,作AC⊥OB于C,OC=BC=AC=2,△OAB是等腰直角三角形,又因为分段的两部分对应的二次项系数的绝对值相等,所以这两段抛物线的形状相同,它们自变量的取值长度也相等,都是2,所以分割的部经过剪切,旋转,平移可以填补,就象图中这样,原来的阴影部分面积等于等腰Rt△OAB,也等于那个正方形的面积,是4

查看答案和解析>>

科目:czsx 来源: 题型:

如图一,三角形ABC中,D、E分别为AB、AC的中点.
问题(1):猜想DE与BC的数量关系;(不必说明理由)
如图二,点O是△ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接.
问题(2):如果DEFG能构成四边形,根据问题(1)的猜想,则四边形DEFG是否为平行四边形,说明理由.
问题(3):当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

(2008•西藏)已知:如图,AB是⊙O的直径.OD⊥AB.交⊙O于点F,点C是⊙O上一点,连接OC、AC、BC.AC的延长线交OD于点D,BC交OD于点E.
(1)证明:∠OCE=∠ODC;
(2)证明:OC2=OE•OD;
(3)如果点C在
AF
上运动(与点A、点F不重合).当OA=2时,△AOD面积用y表示,设OE=x,写出面积y与x的函数表达式,并确定自变量x的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点
(18,6)
(18,6)

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•闸北区一模)已知:如图1,在Rt△OAC中,AO⊥OC,点B在OC边上,OB=6,BC=12,∠ABO+∠C=90°.动点M和N分别在线段AB和AC边上.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

13、(Ⅰ)已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:BE=DF.
(Ⅱ)请写出使如图所示的四边形ABCD为平行四边形的条件(例如,填:AB∥CD且AD∥BC.在不添加辅助线的情况下,写出除上述条件外的另外四组条件,将答案直接写在下面的横线上.)
(1):
∠DAB=∠DCB且∠ADC=∠ABC

(2):
AB=CD且AD=BC

(3):
OA=OC且OD=OB

(4):
AB∥CD且∠DAB=∠DCB

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知点A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=
12
OB.则AB
 
(填“是”或“不是”)⊙O的切线.

查看答案和解析>>

科目:czsx 来源: 题型:

15、△ABC的边AC、BC的中垂线交于AB上一点O,且OC=BC,则∠A=
30
度.

查看答案和解析>>

科目:czsx 来源: 题型:

16、如图,CD是⊙O的直径,BD是弦,延长DC到A,使∠ABD=120°,若添加一个条件,使AB是⊙O的切线,则下列四个条件:①AC=BC;②AC=OC;③OC=BC;④AB=BD中,能使命题成立的有
①②③④
(只要填序号即可).

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
12
OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
12
OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由.
(2)若∠ACD=45°,OC=2,求弦AD的长.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
1
2
OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若D为⊙O上一点,∠ACD=45°,AC=2
2
,求扇形OAC的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

25、在平面上有且只有4个点,这4个点中有一个独特的性质:连接每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD.其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC.
(1)如图4,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC.
①写出相等的线段(不再添加字母);
②求∠BCD的度数.
(2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网运动探究
如图,在Rt△ABC中,∠ACB=90°,BC=AC=10,CP⊥AB于P,顶点C从O点出发沿x轴正方向移动,顶点A随之从y轴正半轴上一点移动到点O为止.
(1)若点P的坐标为(m,n),求证:m=n;
(2)若OC=6,求点P的坐标;
(3)填空:在点C移动的过程中,点P也随之移动,则点P运动的总路径长为
 

查看答案和解析>>

科目:czsx 来源: 题型:

28、如图,已知在⊙O中,延长半径OC到B,使BC=OC,AC是弦,并且AC=BC,连接AB,求证:AB是⊙O的切线.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知直角坐标系内的梯形AOBC(O为原点),AC∥OB,OC⊥BC,OA=2,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5.
(1)填空:0C=
 
,k=
 

(2)求经过O,C,B三点的抛物线的解析式;
(3)AC与抛物线的另一个交点为D,动点P,Q分别从O,D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD交BC于点M,连接PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形.
精英家教网

查看答案和解析>>