精英家教网 > 试题搜索列表 >当m取任何实数时,抛物线y=-2(x-m

当m取任何实数时,抛物线y=-2(x-m答案解析

科目:czsx 来源: 题型:013

当m取任何实数时,抛物线的顶点所在的曲线可能为

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:czsx 来源: 题型:013

当m取任何实数时,抛物线的顶点所在的直线可能为

[  ]

A.x轴
B.y轴
C.y=x
D.y=-x

查看答案和解析>>

科目:czsx 来源:轻松练习30分(测试卷) 初三代数下册 题型:013

当m取任何实数时,抛物线的顶点所在的直线可能为

[  ]

A.x轴
B.y轴
C.y=x
D.y=-x

查看答案和解析>>

科目:czsx 来源:轻松练习30分(测试卷) 初三代数下册 题型:013

当m取任何实数时,抛物线的顶点所在的曲线可能为

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料:当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
x0=m        …(3)
y0=2m-1  …(4)

当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是
 
,其中运用的公式是
 
.由(3)、(4)得到(5)所用的数学方法是
 

②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:czsx 来源: 题型:

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
x0=m  (3)
y0=2m-1  (4)

∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:数学公式
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是______,其中运用的公式是______.由(3)、(4)得到(5)所用的数学方法是______.
②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:czsx 来源:淮北模拟 题型:解答题

阅读材料:当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
x0=m        …(3)
y0=2m-1  …(4)

当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是______,其中运用的公式是______.由(3)、(4)得到(5)所用的数学方法是______.
②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:czsx 来源:2010-2011学年安徽省淮北市五校第五次联考九年级数学试卷(解析版) 题型:解答题

阅读材料:当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x,y),则:
当m的值变化时,顶点横、纵坐标x,y的值也随之变化,将(3)代入(4)
得:y=2x-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是______,其中运用的公式是______.由(3)、(4)得到(5)所用的数学方法是______.
②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:czsx 来源:安微省2007年中考数学模拟试卷(华师版) 题型:059

已知二次函数b取任何实数时,它的图象是一条抛物线.

(1)现在有如下两种说法:

b取任何不同的数值时,所对应的抛物线都有着完全相同的形状;

b取任何不同的数值时,所对应的抛物线都有着不相同的形状;你认为哪一种说法正确,为什么?

(2)若取b=-1,b=2时对应的抛物线的顶点分别为A、B,请你求出AB的解析式,并判断:当b取其它实数值时,所对应的抛物线的顶点是否在这条直线上?说明理由.

(3)在(2)中所确定的直线上有一点C且点C的纵坐标为-1,问在x轴上是否存在点D使△COD为等腰三角形,若存在直接写出点D坐标;若不存在,简单说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
数学公式
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
x0=m  (3)
y0=2m-1  (4)

∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

请写出一个关于a的分式,使它当a取任何实数时都有意义:
 

查看答案和解析>>

科目:czsx 来源: 题型:

求证:m取任何实数时,抛物线y=2x2-(m+5)x+(m+1)的图象与x轴必有两个交点.

查看答案和解析>>

科目:czsx 来源: 题型:

当k取任意实数时,抛物线y=
4
5
(x-k)2+k2的顶点所在的曲线是(  )
A、y=x2
B、y=-x2
C、y=x2(x>0)
D、y=-x2(x>0)

查看答案和解析>>

科目:czsx 来源: 题型:

9、当k
取任何实数
时,方程x2+(2k+1)x-k2+k=0有实数根.

查看答案和解析>>

科目:czsx 来源:2012-2013学年安徽省九年级第一次素质考试数学试卷(解析版) 题型:解答题

求证:m取任何实数时,抛物线的图象与x轴必有两个交点.

 

查看答案和解析>>

科目:czsx 来源:第27章《二次函数》常考题集(04):27.2 二次函数的图象与性质(解析版) 题型:选择题

当k取任意实数时,抛物线y=(x-k)2+k2的顶点所在的曲线是( )
A.y=x2
B.y=-x2
C.y=x2(x>0)
D.y=-x2(x>0)

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》常考题集(11):2.3 二次函数的性质(解析版) 题型:选择题

当k取任意实数时,抛物线y=(x-k)2+k2的顶点所在的曲线是( )
A.y=x2
B.y=-x2
C.y=x2(x>0)
D.y=-x2(x>0)

查看答案和解析>>

科目:czsx 来源:《第26章 二次函数》2010年单元检测试卷(解析版) 题型:选择题

当k取任意实数时,抛物线y=(x-k)2+k2的顶点所在的曲线是( )
A.y=x2
B.y=-x2
C.y=x2(x>0)
D.y=-x2(x>0)

查看答案和解析>>