精英家教网 > 试题搜索列表 >若抛物线y=ax2+bx+c的系数a,b

若抛物线y=ax2+bx+c的系数a,b答案解析

科目:czsx 来源:北京同步题 题型:填空题

若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点(    )。

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源: 题型:

若抛物线y=ax2+bx+c的开口向上,且经过原点,请写出符合上述条件的一个解析式
y=x2
y=x2

查看答案和解析>>

科目:czsx 来源: 题型:

若抛物线y=ax2+bx+c的顶点在第一象限,与x轴的两个交点分布在原点两侧,则点(a,
c
a
)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为
y=-x2+4x-3
y=-x2+4x-3

查看答案和解析>>

科目:czsx 来源: 题型:

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴交的点恰为⊙A与x轴的交点,求该抛物线的解析式;
(3)试判断C是否在抛物线上?

查看答案和解析>>

科目:czsx 来源: 题型:

如图①,直角坐标系中,等腰梯形OABC,AB∥OC,OA=BC,OC在x轴上,OC=7,点A的坐标为(1,3).抛物线y=ax2+bx+c经过O、A、C三点.
精英家教网
(1)求抛物线y=ax2+bx+c的解析式并判定点B是否在抛物线上;
(2)如图②,若抛物线y=ax2+bx+c的顶点为M,在该抛物线上点M和点C之间的曲线上确定点P,使S△CMP=S△OAM,求点P的坐标;
(3)若直线y=mx+n将等腰梯形OABC的周长和面积同时分成相等的两部分,请你确定y=mx+n中m的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E,F两点,与y轴精英家教网交于C、D两点,过C点作⊙A的切线BC交x轴于B
(1)求直线BC的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式;
(3)问C点是否在所求的抛物线上?

查看答案和解析>>

科目:czsx 来源:2007年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2007•临夏州)在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源:2011年江苏省泰州市泰兴实验初级中学中考数学二模试卷(解析版) 题型:解答题

如图①,直角坐标系中,等腰梯形OABC,AB∥OC,OA=BC,OC在x轴上,OC=7,点A的坐标为(1,3).抛物线y=ax2+bx+c经过O、A、C三点.

(1)求抛物线y=ax2+bx+c的解析式并判定点B是否在抛物线上;
(2)如图②,若抛物线y=ax2+bx+c的顶点为M,在该抛物线上点M和点C之间的曲线上确定点P,使S△CMP=S△OAM,求点P的坐标;
(3)若直线y=mx+n将等腰梯形OABC的周长和面积同时分成相等的两部分,请你确定y=mx+n中m的取值范围.

查看答案和解析>>

科目:czsx 来源:2013届江苏省大丰市第四中学九年级12月月考数学试卷(带解析) 题型:填空题

若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为        

查看答案和解析>>

科目:czsx 来源:第26章《二次函数》中考题集(41):26.3 实际问题与二次函数(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图①,直角坐标系中,等腰梯形OABC,AB∥OC,OA=BC,OC在x轴上,OC=7,点A的坐标为(1,3).抛物线y=ax2+bx+c经过O、A、C三点.

(1)求抛物线y=ax2+bx+c的解析式并判定点B是否在抛物线上;
(2)如图②,若抛物线y=ax2+bx+c的顶点为M,在该抛物线上点M和点C之间的曲线上确定点P,使S△CMP=S△OAM,求点P的坐标;
(3)若直线y=mx+n将等腰梯形OABC的周长和面积同时分成相等的两部分,请你确定y=mx+n中m的取值范围.

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(41):2.4 二次函数的应用(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源:2007年甘肃省临夏州中考数学试卷(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源:2009年四川省攀枝花市东区中考数学二模试卷(解析版) 题型:解答题

(2007•临夏州)在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源:2010年甘肃省酒泉市三中九年级奥赛班数学选拔试卷(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:czsx 来源:2012年初中毕业升学考试(江苏无锡卷)数学(解析版) 题型:填空题

若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为  ▲  

 

查看答案和解析>>

科目:czsx 来源:2012年甘肃省中考数学仿真模拟试卷(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴交的点恰为⊙A与x轴的交点,求该抛物线的解析式;
(3)试判断C是否在抛物线上?

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(44):2.8 二次函数的应用(解析版) 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>