精英家教网 > 试题搜索列表 >分母有理化根号5分之1

分母有理化根号5分之1答案解析

科目:czsx 来源: 题型:阅读理解

阅读材料:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”如:(2+
3
)(2-
3
)=1
2+
3
2-
3
的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式.于是二次根式
2+
3
2-
3
可以这样解:
2+
3
2-
3
=
(2+
3
)(2+
3
)
(2-
3
)(2-
3
)
=
7+4
3
1
=7+4
3
,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:①4+
7
的有理化因式是
4-
7
4-
7

②计算:
1
2+
3
+
27
-6
1
3

③计算:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…
1
1999
+
2000

查看答案和解析>>

科目:czsx 来源: 题型:

把分母中的根号化去,叫做分母有理化.把
a-b
a
+
b
这类型的式子分母有理化有如下两种方法:
方法一:
a-b
a
+
b
=
(a-b)•(
a
-
b
)
(
a
+
b
)•(
a
-
b
)
=
a
-
b

方法二:
a-b
a
+
b
=
(
a
)
2
-(
b
)
2
a
+
b
=
(
a
-
b
)(
a
+
b
)
a
+
b
=
a
-
b

请你挑选一种你喜欢的方法,对
1
3
+
2
进行分母有理化.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.
(2+
3
)(2-
3
)=22-(
3
)2=1,(
5
+
2
)(
5
-
2
)=(
5
)2-(
2
)2=3

它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:
1
3
=
3
3
×
3
=
3
3
1
2-
3
=
2+
3
(2-
3
)(2+
3
)
=2+
3

象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.
解决问题:
(1)4+
7
的有理化因式是
 
2
2
分母有理化得
 

(2)分母有理化:①
1
3
2
=
 
;②
1
12
=
 
;③
10
2
5
=
 

(3)计算:
1
2+
3
+
27
-6
1
3

查看答案和解析>>

科目:czsx 来源: 题型:

阅读下面的运算过程:
(1)
1
3
=
3
3
3
=
3
3

(2)
2
3
+1
=
2(
3
+1)
(
3
+1)(
3
-1)
=
3
-1

(3)
1
3
-2
2
=
1•(
3
+2
2
)
(
3
-2
2
)(
3
+2
2
)
=
-
3
-2
2
5

这里把分母中的根号化去的过程叫“分母有理化”,仿照上面的例子,把下面分母有理化:
(1)
5
-
3
5
+
3
=
 

(2)
18
3
+
6
=
 

查看答案和解析>>

科目:czsx 来源: 题型:

二次根式除法运算,通常采用分子、分母同乘以一个式子化去分母中的根号来进行,这叫做
分母有理化
分母有理化

查看答案和解析>>

科目:czsx 来源: 题型:

△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
Ⅰ、证明:△BDG≌△CEF;
Ⅱ、探究:怎样在铁片上准确地画出正方形.
小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答.如果两题都解,只以Ⅱa的解答记分.
Ⅱa、小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果用含根号的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的边长也能画出正方形.具体作法是:
①在AB边上任取一点G′,如图作正方形G′D′E′F′;
②连接BF′并延长交AC于F;
③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四精英家教网边形DEFG即为所求.
你认为小明的作法正确吗?说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,精英家教网且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:
2
5
=
2
5
5
5
=
2
5
5

1
2
-1
=
1×(
2
+1)
(
2
-1)(
2
+1)
=
2
+1

1
3
+
5
=
5
-
3
(
5
+
3
)(
5
-
3
)
=
5
-
3
2
等运算都是分母有理化)

查看答案和解析>>

科目:czsx 来源:2007年广东省深圳市中考数学试卷(解析版) 题型:解答题

(2007•深圳)如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:


等运算都是分母有理化)

查看答案和解析>>

科目:czsx 来源:2011-2012学年山东省威海市八年级下学期期末数学试卷(解析版) 题型:解答题

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.

,

它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:

,

象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.

解决问题:

(1)的有理化因式是                  . 分母有理化得              .

(2)分母有理化:(1) =_________;(2) =________;(3) =______..

(3)计算: .

 

查看答案和解析>>

科目:czsx 来源:2012-2013学年江苏扬州江都区双沟中学九年级10月练习数学试卷(解析版) 题型:解答题

阅读材料:黑白双雄、纵横江湖;双剑合璧,天下无敌。这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比。在二次根式中也有这种相辅相成的“对子”如:的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式。于是二次根式可以这样解:,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化。

解决问题:① 的有理化因式是_______________

②计算:

③计算:

 

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:
数学公式
数学公式
数学公式等运算都是分母有理化)

查看答案和解析>>

科目:czsx 来源:2011-2012学年山东省威海市八年级下学期期末数学试卷(带解析) 题型:解答题

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.
,
它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:
,
象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.
解决问题:
(1)的有理化因式是                 . 分母有理化得             .
(2)分母有理化:(1) ="_________;(2)" ="________;(3)" =______..
(3)计算: .

查看答案和解析>>

科目:czsx 来源:2011-2012学年山东威海市八年级下期末模拟数学试卷(二)(带解析) 题型:解答题

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.
,
它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:
,
象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.
解决问题:
(1) 的有理化因式是                 . 分母有理化得             .
(2)分母有理化:(1) ="_________;(2)" ="________;(3)" =______..
(3)计算: .

查看答案和解析>>

科目:czsx 来源:2013届山东威海市八年级下期末模拟数学试卷(二)(解析版) 题型:解答题

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.

,

它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:

,

象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.

解决问题:

(1) 的有理化因式是                  . 分母有理化得              .

(2)分母有理化:(1) =_________;(2) =________;(3) =______..

(3)计算: .

 

查看答案和解析>>

科目:czsx 来源:广东省中考真题 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E。
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式。
(计算结果要求分母有理化,参考资料:把分母中的根号化去,叫分母有理化。
例如:等分母有理化)

查看答案和解析>>

科目:czsx 来源:2007年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2007•深圳)如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:


等运算都是分母有理化)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.
数学公式
它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:
数学公式
象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.
解决问题:
(1)数学公式的有理化因式是______;数学公式分母有理化得______.
(2)分母有理化:①数学公式=______;②数学公式=______;③数学公式=______.
(3)计算:数学公式

查看答案和解析>>

科目:czsx 来源:数学教研室 题型:059

二次根式的除法运逄通常可以采用化去分母中的根号的方法来进行,例如.数学上将这种把分母中的根号去掉的过程称作“分母有理化”,请你探索“分母有理化”的方法,并把下列各式分母有理化.

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

把分母中的根号化去,叫做分母有理化.把
a-b
a
+
b
这类型的式子分母有理化有如下两种方法:
方法一:
a-b
a
+
b
=
(a-b)•(
a
-
b
)
(
a
+
b
)•(
a
-
b
)
=
a
-
b

方法二:
a-b
a
+
b
=
(
a
)
2
-(
b
)
2
a
+
b
=
(
a
-
b
)(
a
+
b
)
a
+
b
=
a
-
b

请你挑选一种你喜欢的方法,对
1
3
+
2
进行分母有理化.

查看答案和解析>>

科目:czsx 来源:2008年湖南省益阳市初中毕业升学统一考试、数学试卷 题型:059

ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点FG分别落在ACAB上.

Ⅰ.证明:△BDG≌△CEF

Ⅱ.探究:怎样在铁片上准确地画出正方形.

小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答.如果两题都解,只以Ⅱa的解答记分

a.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BDCE的长,从而确定D点和E点,再画正方形DEFG就容易了.

设△ABC的边长为2,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化).

b.小明想:不求正方形的边长也能画出正方形.具体作法是:

①在AB边上任取一点,如图作正方形

②连结B并延长交ACF

③作FEBCEFGABGGDBCD,则四边形DEFG即为所求.

你认为小明的作法正确吗?说明理由.

查看答案和解析>>