精英家教网 > 试题搜索列表 >是等比数列

是等比数列答案解析

科目:gzsx 来源: 题型:

已知{an}是等比数列,a1=2,a4=
1
4
,则a1a2+a2a3+…+a5a6=
341
128
341
128

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•海口模拟)在等差数列{an}中,a3-
a
2
7
+a11=0,数列{bn}是等比数列,且b7=a7则log2b6+log2b8 等于(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

已知数列{an}满足:a1=1,an+1=
an
an+2
(n∈N*)

(I)求证:数列{
1
an
+1}
是等比数列;
(II)若
bn+1
n-λ
=
1
an
+1
,且数列{bn}是单调递增数列,求实数λ的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•枣庄一模)设数列{an}满足a1=1,a2=2,对任意的n∈N*,an+2是an+1与an的等差中项.
(1)设bn=an+1-an,证明数列{bn}是等比数列,并求出其通项公式;
(2)写出数列{an}的通项公式(不要求计算过程),求数列{an}中的最大项.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知点P1(a1,b1),P2(a2,b2).…Pn(anbn)(n∈N*)都在函数y=1og
12
x
的图象上.
(1)若数列{bn}是等差数列,求证数列{an}是等比数列;
(2)若数列{an}的前n项和是Sn=1-2-n,过点Pn,Pn+1的值线与两坐标轴所围三角形面积为cn,求最小的实数t使cn≤t对n∈N*恒成立;
(3)若数列{bn}为由(2)中{an}得到的数列,在bk与bk+1之间插入3k-1(k∈N*)个3,得一新数列{dn},问是否存在这样的正整数m,使数列{dn}的前m项的和Sm=2008,如果存在,求出m的值,如果不存在,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2010•柳州三模)已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记bn=2(1-
1
an
)
,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有
k
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2003•崇文区一模)给定直线l:y=x和点P1(5,1).作点P1关于l的对称点Q1,过Q1作平行于x轴的直线交l于点M1,取一点P2(x2,y2),使M1为线段Q1P2的内分点,且Q1M1:M1P2=2:1,再作P2关于l的对称点Q2,过Q2作平行于x轴的直线交l于点M2,取一点P3(x3,y3),使M2为线段Q2P3的内分点,且Q2M2:M2P3=2:1.如此继续,得到点列P1、P2、P3、…Pn.设Pn(xn,yn),an=xn+1-xn
(Ⅰ)求a1
(Ⅱ)证明:数列{an}是等比数列并求其通项;
(Ⅲ)求Pn点的坐标,并求n→∞limxnn→∞limyn的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•天津)已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,n∈N*,证明:Tn-8=an-1bn+1(n∈N*,n≥2).

查看答案和解析>>

科目:gzsx 来源: 题型:

已知数列{an}中,a1=1,an+1=2an+1,bn=an+1.
(1)证明:数列{bn}是等比数列;
(2)令cn=
n+1an+1
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•东城区二模)在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是
①③
①③

查看答案和解析>>

科目:gzsx 来源: 题型:

设{an}是等比数列,公比q=2,Sn为{an}的前n项和.记Tn=
4Sn-S2nan+1
,n∈N*.设T为数列{Tn}的最大项,则正整数n0=
1
1

查看答案和解析>>

科目:gzsx 来源: 题型:

已知数列{an}、{bn}满足:a1=1,a2=a(a为常数),且bn=an•an+1(n=1,2,3,…).
(Ⅰ)若{an}是等比数列,求数列{bn}和前n项和Sn
(Ⅱ)当{bn}是等比数列时,甲同学说:{an}一定是等比数列; 乙 同学说:{an}一定不是等比数列,请你对甲、乙两人的判断正确与否作出解释.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2012•许昌县一模)已知数列{an} 的前n项和为Sn,且Sn=n2,n∈N*,数列{bn} 是等比数列,且满足:b1=a1,2b3=b4
(I)求数列{an} 和{bn} 的通项公式;
(n)设cn=
1anan+1
,求数列{cn} 前n项和Tn

查看答案和解析>>

科目:gzsx 来源: 题型:

已知数列{an}满足,an+1=
an(
a
2
n
+3)
3
a
2
n
+1

(1)若方程f(x)=x的解称为函数y=f(x)的不动点,求an+1=f(an)的不动点的值;
(2)若a1=2,bn=
an-1
an+1
,求证:数列{lnbn}是等比数列,并求数列{bn}的通项.
(3)当任意n∈N*时,求证:b1+b2+b3+…+bn
1
2

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•奉贤区二模)已知数列{an}对任意的n≥2,n∈N*满足:an+1+an-1<2an,则称{an}为“Z数列”.
(1)求证:任何的等差数列不可能是“Z数列”;
(2)若正数列{bn},数列{lgbn}是“Z数列”,数列{bn}是否可能是等比数列,说明理由,构造一个数列{cn},使得{cn}是“Z数列”;
(3)若数列{an}是“Z数列”,设s,t,m∈N*,且s<t,求证求证at+m-as+m<at-as

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•海淀区二模)已知数列{an}是等比数列,且a1.a3=4,a4=8,a3的值为
±4
±4

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•宝山区二模)已知数列{an}的前n项和为Sn,且满足a1=a(a≠3),an+1=Sn+3n,设bn=Sn-3n,n∈N*
(1)求证:数列{bn}是等比数列;
(2)若an+1≥an,n∈N*,求实数a的最小值;
(3)当a=4时,给出一个新数列{en},其中en=
3 , n=1
bn , n≥2
,设这个新数列的前n项和为Cn,若Cn可以写成tp(t,p∈N*且t>1,p>1)的形式,则称Cn为“指数型和”.问{Cn}中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

下列命题正确的有
 
(把所有正确命题的序号填在横线上):
①若数列{an}是等差数列,且am+an=as+at(m、n、s、t∈N*),则m+n=s+t;
②若Sn是等差数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等差数列;
③若Sn是等比数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等比数列;
④若Sn是等比数列{an}的前n项的和,且Sn=Aqn+B;(其中A、B是非零常数,n∈N*),则A+B为零.

查看答案和解析>>

科目:gzsx 来源: 题型:

如图,△OBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=
1
2
yn+yn+1+yn+2.

(Ⅰ)求a1,a2,a3及an
(Ⅱ)证明yn+4=1-
yn
4
,n∈N*

(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明{bn}是等比数列.

查看答案和解析>>

科目:gzsx 来源: 题型:

设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较
a
1
m
m
a
1
h
h
a
2
k
k
的大小.

查看答案和解析>>