精英家教网 > 试题搜索列表 >当a=-2.1,b=1.2,c=-3.4

当a=-2.1,b=1.2,c=-3.4答案解析

科目:czsx 来源: 题型:

某工厂有一水塔装有两个相同的进水管与一个出水管(每小时每个进水管的进水量与出水管的出水量保持不变).工厂根据实际情况安装了自动控制系统来控制进水管与出水管开放的时间.设置的程序为:每天0点至6点,同时打开两个进水管;6点至12点,关闭一个进水管同时打开出水管;12点至24点,关闭另一个进精英家教网水管.如图表示水塔中的储水量Q(米3)与时间t(小时)之间的函数图象.
(1)根据函数的图象回答从0点至12点,水塔中每小时增加的水量是多少米3
(2)请你求出当12≤t≤24时,Q与t之间的函数的函数关系式,并画出函数的图象;
(3)请你利用所学过的数学知识,回答:从第一天0点起,第几天何时水塔中的储水量首次达到425米3

查看答案和解析>>

科目:czsx 来源: 题型:

当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

101、已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表,则当x满足的条件是
0或2
时,y=0;当x满足的条件是
0<x<2
时,y>0.
x -2 -1 0 1 2 3
y -6 -6 0 2 0 -6

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)当x=
 
时,PQ⊥AC,x=
 
时,PQ⊥AB;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为
 

(3)当0<x<2时,求证:AD平分△PQD的面积;
(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).

查看答案和解析>>

科目:czsx 来源: 题型:

如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=2
3
,CG=4
3
时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立精英家教网?试写出你的猜想,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过(  )
A、一,二,三象限B、一,二,四象限C、一,三,四象限D、一,二,三,四象限

查看答案和解析>>

科目:czsx 来源: 题型:

在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△精英家教网OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.
(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:czsx 来源: 题型:

二次函数y=-x2+2x+3,当x=
 
时,y有最
 
值为
 

查看答案和解析>>

科目:czsx 来源: 题型:

22、解答题:
(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2-cdx.
(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?
(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2.1,9,0.9.
①这10枝钢笔的最高的售价和最低的售价各是几元?
②当小亮卖完钢笔后是盈还是亏?

查看答案和解析>>

科目:czsx 来源: 题型:

26、恩格尔系数n是指家庭日常饮食开支占家庭收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的n值如下所示:
如用含n的不等式表示,则贫困家庭为
n>75%
;小康家庭为
40%≤n≤49%
;最富裕国家为
n<20%
;当某一家庭n=0.6时,表明该家庭的实际生活水平是
温饱

查看答案和解析>>

科目:czsx 来源: 题型:

若分式
2x
x-y
的值为5,当x、y都扩大2倍后,所得分式的值为(  )
A、2.5B、5C、10D、25

查看答案和解析>>

科目:czsx 来源: 题型:

当x=
 
时,分式
x2-7x-8|x|-1
的值为零.

查看答案和解析>>

科目:czsx 来源: 题型:

在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.
(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写精英家教网出它的定义域;
(2)当x=3时,求CF的长;
(3)当tan∠PAE=
12
时,求BP的长.

查看答案和解析>>

科目:czsx 来源: 题型:

二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取(  )
A、12B、11C、10D、9

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,正方形OABC的面积是4,点B在反比例函数y=
kx
(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是
 
.(用含m的代数式表示)

查看答案和解析>>

科目:czsx 来源: 题型:

已知:△ABC中,以AC、BC为边分别向形外作等边三角形ACD和BCE,M为CD中点,N为CE中点,P为AB中点.
(1)如图1,当∠ACB=120°时,∠MPN的度数为
 

(2)如图2,当∠ACB=α(0°<α<180°)时,∠MPN的度数是否变化?给出你的证明.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

已知:如图,⊙O的直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连接BC、BA,过点C作CD⊥AB于D、设CB的长为x,CD的长为y.
(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

已知二次函数y=ax2+bx+c,当x=2时,y有最小值-1,且抛物线与x轴两交点间的距离为2,则此二次函数的解析式为

查看答案和解析>>

科目:czsx 来源: 题型:

点P是x轴正半轴的一个动点,过点P作x轴的垂线PA交双曲线y=
1
x
于点A,连接OA.
(1)如图甲,当点P在x轴的正方向上运动时,Rt△AOP的面积大小是否变化?若不变,请求出Rt△AOP的面积;若改变,试说明理由;
(2)如图乙,在x轴上的点P的右侧有一点D,过点D作x轴的垂线交双曲线于点B,连接BO交AP于点C,设△AOP的面积是S1,梯形BCPD的面积为S2,则S1与S2的大小关系是S1
S2(选填“>”、“<”、“=”);
(3)如图丙,AO的延长线与双曲线y=
1
x
的另一个交点为F,FH垂直于x轴,垂足为点H,连接AH,PF,试证明四边形APFH的面积为一个常数.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

20、如图是一个运算器的示意图,A,B是输入的两个数据,C是输出的结果.右表是输入A、B数据后,运算器输出C的对应值.

请据此判断,当A=10,B=-8时,则C=
18
;当A=-12,C=16时,则B=
±4

查看答案和解析>>