精英家教网 > 试题搜索列表 >若a+2=4.则求不等式2x+a<3的解集

若a+2=4.则求不等式2x+a<3的解集答案解析

科目:gzsx 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:gzsx 来源:福建 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:gzsx 来源:2011年福建省高考数学试卷(理科)(解析版) 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 (其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:czsx 来源: 题型:

阅读材料:若使分式
b
a
的值大于0,则
a>0
b>0
a<0
b<0
此两不等式组的解集都能使分式
b
a
的值大于0.
解决问题:求不等式
2-3x
2x-1
>0
的解集.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是
x<-3或x>1
x<-3或x>1

(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:czsx 来源:2012年4月份中考数学模拟试卷(十五)(解析版) 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:czsx 来源:2012年湖北省黄冈市麻城市中考数学模拟试卷(解析版) 题型:解答题

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是______.
(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

先阅读理解下面的例题,再按要求
例题:解一元二次不等式x2-9>0.
∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:
(1)求关于x的两个多项式的商组成不等式
3x-7
2x-9
<0
的解集;
(2)若a,b是(1)中解集x的整数解,以a,b,c为△ABC为边长,c是△ABC中的最长的边长.
①求c的取值范围.
②若c为整数,求这个等腰△ABC的周长.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:
(1)求关于x的两个多项式的商组成不等式
3x-7
2x-9
<0
的解集;
(2)若a,b是(1)中解集x的整数解,以a,b,c为△ABC为边长,c是△ABC中的最长的边长.
①求c的取值范围.
②若c为整数,求这个等腰△ABC的周长.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

12.材料:分母中含有未知数的不等式叫分式不等式,如:$\frac{2x}{x+1}$>0;$\frac{x+3}{x-1}$<0等.那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:
(1)若a>0,b>0,则$\frac{a}{b}$>0;若a<0,b<0,则$\frac{a}{b}$>0;
(2)若a>0,b<0,则$\frac{a}{b}$<0;若a<0,b>0,则$\frac{a}{b}$<0.
反之:(1)若$\frac{a}{b}$>0,则$\left\{\begin{array}{l}{a>0}\\{b>0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b<0}\end{array}\right.$
(2)若$\frac{a}{b}$<0,则$\left\{\begin{array}{l}{a>0}\\{b<0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b>0}\end{array}\right.$.
根据上述规律,求不等式$\frac{x+1}{x-3}$>0的解集.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=
5
3

根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有
a>0
b>0
a<0
b<0
,请判断王力的推测是否正确?若正确,请你求出不等式
5x-1
2x-3
>0的解集,如果不正确,请说明理由.

查看答案和解析>>