科目:czsx 来源:2004年初中毕业升学考试(浙江温州卷)数学(带解析) 题型:解答题
如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。![]()
(1)求四边形CDFP的周长;(3分)
(2)请连结OF,OP,求证:OF⊥OP;(4分)
(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P
使△EFO∽△EHG(其对应关系是 )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)
科目:czsx 来源:2004年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:解答题
如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。
![]()
(1)求四边形CDFP的周长;(3分)
(2)请连结OF,OP,求证:OF⊥OP;(4分)
(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P
使△EFO∽△EHG(其对应关系是 )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)
科目:czsx 来源:不详 题型:解答题
科目:gzsx 来源:2013-2014学年江苏苏北四市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源:2013-2014学年江苏苏北四市高三第一次质量检测文科数学试卷(解析版) 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源:2013-2014学年江苏盐城第一中学高三第二学期期初检测理科数学试卷(解析版) 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源:2013-2014学年江苏盐城第一中学高三第二学期期初检测文科数学试卷(解析版) 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
,圆心角为
(弧度).
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?![]()
科目:gzsx 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
科目:gzsx 来源:不详 题型:解答题
科目:gzsx 来源:2016届安徽池州一中、铜陵三中高一重点班测试文科数学卷(解析版) 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
,圆心角为
(弧度).
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
![]()
科目:gzsx 来源: 题型:
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
![]()
科目:gzsx 来源: 题型:
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
![]()
科目:czsx 来源: 题型:
科目:czsx 来源: 题型:
| 5 |
科目:czsx 来源: 题型:
科目:czsx 来源: 题型: