精英家教网 > 试题搜索列表 >如图 直径 于点 过点 延长线于点 求线段 的长

如图 直径 于点 过点 延长线于点 求线段 的长答案解析

科目:czsx 来源:2004年初中毕业升学考试(浙江温州卷)数学(带解析) 题型:解答题

如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。

(1)求四边形CDFP的周长;(3分)
(2)请连结OF,OP,求证:OF⊥OP;(4分)
(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P
使△EFO∽△EHG(其对应关系是                              )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)

查看答案和解析>>

科目:czsx 来源:2004年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:解答题

如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。

(1)求四边形CDFP的周长;(3分)

(2)请连结OF,OP,求证:OF⊥OP;(4分)

(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P

使△EFO∽△EHG(其对应关系是                              )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)

 

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。

(1)求四边形CDFP的周长;(3分)
(2)请连结OF,OP,求证:OF⊥OP;(4分)
(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P
使△EFO∽△EHG(其对应关系是                              )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)

查看答案和解析>>

科目:gzsx 来源:2013-2014学年江苏苏北四市高三第一次质量检测理科数学试卷(解析版) 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

 

查看答案和解析>>

科目:gzsx 来源:2013-2014学年江苏苏北四市高三第一次质量检测文科数学试卷(解析版) 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

 

查看答案和解析>>

科目:gzsx 来源:2013-2014学年江苏盐城第一中学高三第二学期期初检测理科数学试卷(解析版) 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

 

查看答案和解析>>

科目:gzsx 来源:2013-2014学年江苏盐城第一中学高三第二学期期初检测文科数学试卷(解析版) 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30,其中大圆弧所在圆的半径为10.设小圆弧所在圆的半径为米,圆心角为(弧度).

1)求关于的函数关系式;

2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为9/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

 

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为,圆心角为(弧度).
(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源:2016届安徽池州一中、铜陵三中高一重点班测试文科数学卷(解析版) 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为,圆心角为(弧度).

(1)求关于的函数关系式;

(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

 

 

查看答案和解析>>

科目:gzsx 来源: 题型:


某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;

(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:gzsx 来源: 题型:


某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;

(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,过⊙O上一点A的切线AC与⊙O直径BD的延长线交于点C,过A作AE⊥BC于点E.
(1)求证:∠CAE=2∠B;
(2)已知:AC=8,且CD=4,求⊙O的半径及线段AE的长.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E.
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长时关于x的方程x2-kx+4
5
=0的两根,求线段EB的长;
(3)当点O位于线段AB何处时,△ODC恰好是等边三角形?并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图所示,⊙O的半径OA=1,点M是线段OA延长线上的任意一点,⊙M与⊙O内切于点B,过点A作CD⊥OA交⊙M于C、D,连接CM、OC,OC交⊙O于E.
(1)若设OM=x,S△OMC=y,求y关于x的函数解析式,并写出函数的定义域;
(2)将⊙O沿弦CD翻折得到⊙N,当x=4时,试判断⊙N与直线CM的位置关系;
(3)将⊙O绕着点E旋转180°得到⊙P,如果⊙P与⊙M内切,求x的值.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.精英家教网直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

查看答案和解析>>