精英家教网 > 试题搜索列表 >如图.点p在点O上.过点P做点O的切线

如图.点p在点O上.过点P做点O的切线答案解析

科目:czsx 来源: 题型:

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
精英家教网
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是
 
,该图形与圆O的位置关系是
 

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:新课标九年级数学竞赛培训第18讲:圆的基本性质(解析版) 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:2007年江苏省泰州市泰兴市横垛初中中考数学模拟试卷(解析版) 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:2001年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2001•南京)如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:2001年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2001•南京)如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源:2001年江苏省南京市中考数学试卷(解析版) 题型:解答题

(2001•南京)如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求经过点C的“蛋圆”的切线的表达式;
(2)求经过点D的“蛋圆”的切线的表达式;
(3)已知点E是“蛋圆”上一点(不与点A、点B重合),点E关于x轴的对称点是F,若点F也在“蛋圆”上,求点E的坐标.

查看答案和解析>>

科目:czsx 来源:2013年北京市通州区中考数学一模试卷(解析版) 题型:解答题

我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求经过点C的“蛋圆”的切线的表达式;
(2)求经过点D的“蛋圆”的切线的表达式;
(3)已知点E是“蛋圆”上一点(不与点A、点B重合),点E关于x轴的对称点是F,若点F也在“蛋圆”上,求点E的坐标.

查看答案和解析>>

科目:czsx 来源:2013年福建省泉州市中考数学模拟试卷(三)(解析版) 题型:解答题

我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求经过点C的“蛋圆”的切线的表达式;
(2)求经过点D的“蛋圆”的切线的表达式;
(3)已知点E是“蛋圆”上一点(不与点A、点B重合),点E关于x轴的对称点是F,若点F也在“蛋圆”上,求点E的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•通州区一模)我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求经过点C的“蛋圆”的切线的表达式;
(2)求经过点D的“蛋圆”的切线的表达式;
(3)已知点E是“蛋圆”上一点(不与点A、点B重合),点E关于x轴的对称点是F,若点F也在“蛋圆”上,求点E的坐标.

查看答案和解析>>

科目:czsx 来源:同步练习  数学九年级下册 题型:044

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.

(1)当∠QPA=时,请你对△QCP的形状做出猜想,并给予证明;

(2)当QP⊥AB时,△QCP的形状是________三角形;

(3)由(1)(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是________三角形.

查看答案和解析>>

科目:czsx 来源:三点一测丛书九年级数学上 题型:044

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动,且总保持PQ=PO,过点Q作O的切线交BA的延长线于点C.

(1)当∠QPA=时,请你对△QCP的形状做出猜想,并给予证明;

(2)当QP⊥AB时,△QCP的形状是何种三角形,并说明理由;

(3)由(1)、(2)得出结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是何种三角形?

查看答案和解析>>

科目:czsx 来源: 题型:044

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.

(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予说明.

(2)当PQ⊥AB时,△QCP的形状是________三角形.

(3)由(1)(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是________三角形.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△Q作业宝CP一定是______三角形.

查看答案和解析>>

科目:czsx 来源:《第3章 直线和圆、圆和圆的位置关系》2009年单元测试(解析版) 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>

科目:czsx 来源:《第24章 圆》2009年综合能力测试(解析版) 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>

科目:czsx 来源:2006年浙江省宁波市昆山高中实验班招生考试数学试卷(解析版) 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>