精英家教网 > 试题搜索列表 >如图.抛物线y=ax^2+bx+c的图象经过点A

如图.抛物线y=ax^2+bx+c的图象经过点A答案解析

科目:czsx 来源: 题型:

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.

(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使
OM
OP
=
2
3
?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.
作业宝
(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使数学公式=数学公式?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令数学公式,试问:是否存在实数k,使线段A1B1的长为数学公式.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第34章《二次函数》中考题集(49):34.4 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第27章《二次函数》中考题集(48):27.3 实践与探索(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第26章《二次函数》中考题集(46):26.3 实际问题与二次函数(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(50):2.8 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第20章《二次函数和反比例函数》中考题集(45):20.5 二次函数的一些应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第2章《二次函数》中考题集(45):2.4 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第23章《二次函数与反比例函数》中考题集(45):23.5 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•扬州)已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2005年江苏省扬州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•扬州)已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2012年湖南省郴州市中考数学试卷(解析版) 题型:解答题

阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=

    例:求点P(1,2)到直线y=x-的距离d时,先将y=化为5x-12y-2=0,再由上述距离公式求得d==
    解答下列问题:
    如图2,已知直线y=-与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:湖南省中考真题 题型:解答题

阅读下列材料:    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.   
 例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.    
解答下列问题:    
如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,
抛物线y=x2﹣4x+5上的一点M(3,2).    
(1)求点M到直线AB的距离.    
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

阅读下列材料:
  我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=数学公式

  例:求点P(1,2)到直线y=数学公式x-数学公式的距离d时,先将y=数学公式化为5x-12y-2=0,再由上述距离公式求得d=数学公式=数学公式
  解答下列问题:
  如图2,已知直线y=-数学公式与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
  (1)求点M到直线AB的距离.
  (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OAABBC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.mn是常数, m>1,n>0.

(1)请你确定n的值和点B的坐标;

(2)当动点P是经过点OC的抛物线yaxbxc的顶点,且在双曲线y上时,求这时四边形OABC的面积.

查看答案和解析>>

科目:czsx 来源: 题型:


如图,在平面直角坐标系中,抛物线yax 2bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点CD,0).动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.

(1)求该抛物线的解析式;

(2)若经过t秒的移动,线段PQCD垂直平分,求此时t的值;

(3)在第一象限的抛物线上取一点G,使得=,再在抛物线上找点E(不与点A、B、C重合),使得∠GBE=45°,求E点的坐标.

 

查看答案和解析>>