精英家教网 > 试题搜索列表 >等腰三角形ABC在平面直角

等腰三角形ABC在平面直角答案解析

科目:czsx 来源:2016年初中毕业升学考试(云南曲靖卷)数学(解析版) 题型:填空题

等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

查看答案和解析>>

科目:czsx 来源:2016-2017学年黑龙江铁力市九年级上阶段检测数学试卷(解析版) 题型:填空题

等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

查看答案和解析>>

科目:czsx 来源:湖北省期中题 题型:探究题

在等腰三角形ABC中,AB=AC,其一腰上的高为h。 M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形1来证明:h1+h2=h
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论,请你画出图形,并直接写出结论不必证明。
(3)利用以上结论解答,如图2在平面直角坐标系中有两条直线l1:y=x+3 , l2:y=-3x+3,若l2上的一点M到l1的距离是,求点M的坐标。

查看答案和解析>>

科目:xxsx 来源: 题型:

在图中﹐三角形ABC是等腰直角三角形﹐D是半圆周的中点﹐BC是半圆的直径.已知AB=BC=10公分﹐那么阴影面积是多少平方公分﹖

查看答案和解析>>

科目:czsx 来源: 题型:

在等腰三角形ABC中,AO⊥BC于点O,AB=AC=6,∠ABC=30°,以BC所在的直线为x轴,以AO所在的直线为y轴,建立平面直角坐标系,将与△ABC重合的△DEF(点D与点A、点E与点B、点F与点C分别重合)沿x轴向右平移,当点E与点O重合时,停止移动,然后将△DEF绕点O逆时针旋转,当ED与y轴的正半轴重合时,停止转动(如图1).

(1)F点的坐标为:(
 
 
).
(2)将△DEF沿x轴向左平移,当点E与点B重合时,停止移动,在移动过程中,ED与AB相交于点H,EF与CA的延长线相交于点G(如图2所示),设BE=m,以A、H、E、G为顶点的四边形面积为S,求S与m之间的函数关系式;
(3)如图3,△DEF的顶点E在△ABC的BC边上移动,ED经过点A,过A、E、C三点作⊙O1交EF于点M,连结CM.
①当⊙O1与AB相切时,求⊙O1的半径.
②设点M的坐标为(x,y),请求出y与x之间的函数关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是
3
2
.求点M的坐标.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•平顶山一模)直线y=x-1与坐标轴交于A、B两点,点C在x轴上,若△ABC为等腰三角形且△ABC的面积为S△ABC=
2
2
,则点C的坐标为
(1-
2
,0)或(1+
2
,0)
(1-
2
,0)或(1+
2
,0)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=数学公式x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是数学公式.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2009-2010学年江苏省泰州市姜堰市九年级(上)期中数学试卷A(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2009-2010学年江苏省泰州市兴化市文正学校九年级(上)期中数学试卷(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2009-2010学年江苏省泰州市姜堰市张甸区九年级(上)期中数学试卷(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2011-2012学年江苏省连云港市东海县平明镇中学九年级(下)第一次段考数学试卷(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2012年江苏省南京市学大教育专修学校中考数学模拟试卷(5月份)(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2009年江苏省初中毕业升学模拟试卷(1)(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:2009年江苏省初中毕业升学模拟(解析版) 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是
3
2
.求点M的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

16.△ABC在平面直角坐标系中的位置如图所示,点O为坐标原点.
(1)将△ABC向上平移3个单位长度,再向左平移1个单位长度,得到△A1B1C1;作△A1B1C1关于y轴对称的△A2B2C2;在图中画出△A1B1C1和△A2B2C2并写出A2、B2、C2的坐标.
(2)在y轴上存在一点M,使得△A1B1M的周长最小,请在图中画出点M的位置.
(3)将△ABC平移至点C与原点重合,在坐标轴上有点P,使得△ACP为等腰三角形,这样的P点有3个.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

1.△ABC在平面直角坐标系中的位置,如图所示,点A的坐标为(1,0),点C的坐标为(0,3),关于x的二次函数y=x2+bx+c的图象过点A、B、C,抛物线的对称轴与x轴交于点D.
(1)求此二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在,请求出点P的坐标?若不存在,请说明理由;
(3)有一个动点M从点A出发,以每秒1个单位的速度沿AB向点B运动,另一动点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何位置时,△MNB的面积最大,最大面积是多少?

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在等腰三角形ABC中,底边BC=8cm,腰长为5cm,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角坐标系.
(1)直接写出点A,B,C的坐标.
(2)一动点P以0.25cm/s的速度沿底边从点B向点C运动(P点不运动到C点),设点P运动的时间为t(单位:s).
①写出△APC的面积S关于t的函数解析式,并写出自变量t的取值范围.
②当t为何值时,△APB为等腰三角形?并写出此时点P的坐标.
③当t为何值时PA与一腰垂直?

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=30°,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角坐标系.
(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s).①当t为何值时,△ABP是直角三角形;②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动.试写出△BPQ的面积S关于t的函数解析式,并写出自变量的取值范围.

查看答案和解析>>