如图,△abc和△cde都是等边三角形,且点a,c,e在一条直线上.答案解析
科目:czsx
来源:
题型:解答题
17.

如图,△ABC和△CDE都是等边三角形,点A、E、D在同一条直线上,且∠EBD=62°,求∠AEB的度数.
查看答案和解析>>
科目:czsx
来源:
题型:044
如图,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上.度量并比较AD与BE的大小.你能对所得结论说明理由吗?

查看答案和解析>>
科目:czsx
来源:
题型:

如图,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上.AD与BE相等吗?证明你的结论.
查看答案和解析>>
科目:czsx
来源:
题型:

如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上.
(1)AD与BE相等吗?为什么?
(2)连接MN,试说明△MNC为等边三角形.
查看答案和解析>>
科目:czsx
来源:
题型:解答题
10.

如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.
(1)求证:△ACD≌△BCE;
(2)求证:AH=BF;
(3)求证:△CFH为等边三角形.
查看答案和解析>>
科目:czsx
来源:
题型:阅读理解
阅读材料:
如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.

解决问题:
(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.
(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=
,AC=
,
①求
的值及∠BFA的度数;
②若D为AC的中点,求△AOC面积的最大值.
查看答案和解析>>
科目:czsx
来源:
题型:
【
观察发现】如图1,△ABC和△CDE都是等边三角形,且点B、C、E在一条直线上,连接BD和AE,BD、AE相交于点P,猜想线段BD与AE的数量关系,以及BD与AE相交构成的锐角的度数.(只要求写出结论,不必说出理由)
【
深入探究】如图2,将△CDE绕点C逆时针旋转一定的角度,其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请说明理由
【
拓展应用】如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,求边CD的长度.

查看答案和解析>>
科目:czsx
来源:
题型:解答题
11.探索研究:已知:△ABC和△CDE都是等边三角形.
(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:相等,
线段AD与BE所成的锐角度数为60°;
(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;
灵活运用:
如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.
查看答案和解析>>