精英家教网 > 试题搜索列表 >(1)求直线CD的解析式; (2)求经过

(1)求直线CD的解析式; (2)求经过答案解析

科目:czsx 来源: 题型:

精英家教网如图矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).
(1)直接写出B点坐标;
(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1:3两部分,求直线CD的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知点D(6,1)是反比例函数y=
kx
(k≠0)图象上的一点,点C是该函数在第三象限分支上的动点,过C、D分别作CA⊥x轴,DB⊥y轴,垂足分别为A、B,连结AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)设直线CD交x轴于点E,求证:不管点C如何运动,总有△AOB∽△EAC.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8
3
3
,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D.
(1)求点G的坐标;
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴与A、B两点,交y轴于点C,其中点B的坐标为(3,0).
(1)求该抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C(
163
,0)
精英家教网O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8),
(1)试求抛物线的解析式;
(2)设点D是该抛物线的顶点,试求直线CD的解析式;
(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网已知:如图,直线y=-
3
x+2
3
与x轴、y轴分别交于点A和点B,D是y轴上的一点,若将△DAB沿直线DA折叠,点B恰好落在x轴正半轴上的点C处,求直线CD的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,直线AB分别与x轴、y轴相交于点A和点B,如果A(2,0),B(0,4)线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.
(1)求直线AB的解析式;
(2)当C点在y轴负半轴上,且△COD和△AOB全等时,直接写出C、D两点的坐标;
(3)是否存在经过第一、二、三象限的直线CD,使CD⊥AB?如果存在,请求出直线CD的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,平面直角坐标系中,O为坐标原点,直线AB:y=x+12与直线CD:y=kx+10k交于点E,且E点的纵坐标为-2,
(1)求直线CD的解析式;
(2)动点P从B出发以每秒
2
个单位的速度沿射线BA运动,过点P作PQ∥x轴交直线CD于Q,若点P的运动时间为t秒,PQ的长度为y,求y与t的函数关系式(t>0);
(3)在(2)的条件下,求t为何值时,△PQO的外接圆与坐标轴相切.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•道外区一模)如图,在平面直角坐标系中,点0是坐标原点,直线y=x+4分别交x轴、y轴于点A、点B,直线y=-2x+b分别交x轴、y轴于点C、点D,且0C=20B.设直线AB、CD相交于点E.
(1)求直线CD的解析式;
(2)动点P从点B出发沿线段BC以每秒钟
5
个单位的速度向点C匀速移动,同时动点Q从点D出发沿线段DC以每秒钟2
5
个单位的速度向点C匀速移动,当P到达点C时,点Q同时停止移动.设P点移动的时间为t秒,PQ的长为d(d≠0),求d与t之间的函数关系式,
并直接写出自变量t的取值范围;
(3)在(2)的条件下,在P、Q.的运动过程中,设直线PQ、直线AB相交于点N.当t为何值时,
NQ
PQ
=
2
3
?并判断此时以点Q为圆心,以3为半径的⊙Q与直线AB位置关系,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•道里区一模)如图,在平面直角坐标系内,点O为坐标原点,直线y=-x+5交x轴于点A,交y轴于点B,直线CD交x轴负半轴于点C,交y轴正半轴于点D,直线CD交AB于点E,过点E作x轴的垂线,点F为垂足,若EF=3,tan∠ECF=
12

(1)求直线CD的解析式;
(2)横坐标为t的点P在CD(点P不与点C,点D重合)上,过点P作x轴的平行线交AB于点G,过点G作AB的垂线交y轴于点H,设线段OH的长为d,求d与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当t为何值时,OH的中点在以PF为直径的圆上?

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于点A、B两点,交y轴于点C,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式;
(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•湖北模拟)如图,已知双曲线y=
kx
,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•莒南县二模)已知直线y=2x+2与x轴、y轴交于A、B两点,过点C(2,0)作直线AB的垂线,垂足为D.
(1)求直线CD的解析式;
(2)求点C到直线AB的距离;
(3)推广:若已知直线y=k1x+b1和直线y=k2x+b2互相垂直,请猜想直线常数k1、k2之间的关系.只写出结论,无需证明.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•济南)如图,已知双曲线y=
kx
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求直线CD的解析式;
(2)是否存在x轴上的点E,使得以A、O、E为顶点的三角形与△DAO相似?若存在,请写出符合条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

在直角梯形OABC中,CB∥OA,∠COA=90°,CB=4,OA=8,AB=4
5
精英家教网分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)若D是线段OB上的点,OD=3DB,直线CD交x轴于E,求直线CD的解析式;
(3)若点P是(2)中直线CD上的一个动点,在x轴上方的平面内是否存在另一个点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知C、D是双曲线y=
m
x
在第一象限内的分支上的两点,直线CD分别交x轴,y轴于A、B两点,过点C作CG⊥x轴于点G,设C、D的坐标分别为(x1,y1),(x2,y2),连结OC、OD.
(1)求证:y1<OC<y1+
m
y1

(2)若OC=
10
x1
y1
=
y2
x2
=
1
3
,求直线CD的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<精英家教网OB),点C在y轴上,且OA:AC=2:5,直线CD垂直于直线AB于点P,交x轴于点D.
(1)求出点A、点B的坐标.
(2)请求出直线CD的解析式.
(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x,y轴上,点D在OA上,且CD=AD,
(1)求直线CD的解析式;
(2)求经过B、C、D三点的抛物线的解析式;
(3)在上述抛物线上位于x轴下方的图象上,是否存在一点P,使△PBC的面积等于矩形的面积?若存在,求出点P的坐标,若不存在请说明理由.

查看答案和解析>>