题目列表(包括答案和解析)
(本小题满分14分)
设椭圆的左、右焦点分别为F1、F2,上顶点为A,离心率e=,在x轴负半轴上有一点B,且.
(Ⅰ)若过A、B、F2三点的圆恰好与直线相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.
x2 |
a2 |
y2 |
b2 |
| ||
3 |
3
| ||
2 |
| ||
|
|
F1F |
OA |
OB |
1 |
4 |
1 |
2 |
(本题14分)已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于,两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求的面积;
(Ⅲ)在线段上是否存在点,使得以为邻边的平行四边形是菱形?
若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为.
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆与轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com