设椭圆的焦点分别为.右准线交轴于点A.且. (Ⅰ)试求椭圆的方程, (Ⅱ)过.分别作互相垂直的两直线与椭圆分别交于D.E. M.N四点.试求四边形DMEN面积的最大值和最小值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 

设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上

有一点,满足,且.

   (1)求椭圆的离心率;

   (2)若过三点的圆恰好与直线相切,求椭圆的方程;

   (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。  

 

 

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:

 

1)求的标准方程, 并分别求出它们的离心率

2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

 

查看答案和解析>>

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:













 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案