题目列表(包括答案和解析)
(本小题满分14分)
已知集合
是满足下列性质的函数
的全体, 存在非零常数
, 对任意
, 有
成立.
(1) 函数
是否属于集合
?说明理由;
(2) 设
, 且
, 已知当
时,
,
求当
时,
的解析式.
(3)若函数
,求实数
的取值范围.
(本小题满分14分)已知函数
满足
,且
有唯一实数解。
(1)求
的表达式 ;
(2)记
,且
=
,求数列
的通项公式。
(3)记
,数列{
}的前
项和为
,是否存在k∈N*,使得
对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
(本小题满分14分)已知函数
满足
,且
有唯一实数解。
(1)求
的表达式 ;
(2)记
,且
=
,求数列
的通项公式。
(3)记
,数列{
}的前
项和为
,是否存在k∈N*,使得
对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
(本小题满分14分)
已知:函数
(
),
.
(1)若函数
图象上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com