对于正整数n和m.其中m<n.定义n m!=.其中k是满足 n>km的最大整数.则= . 查看更多

 

题目列表(包括答案和解析)

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同时满足下列两个条件的所有a的值:①对于任意正整数n,都有Tn
1
6
;②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1
求证:①对于任意正整数n,都有Tn
1
6
.②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>

在数列{an}中,a1=1,an+1=1-
1
4an
bn=
2
2an-1
,其中n∈N*

(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an
(2)设cn=
2
n+1
an
,数列{cncn+2}的前n项和为Tn,是否存在正整整m,使得Tn
1
cmcm+1
对于n∈N*恒成立,若存在,求出m的最小值,若不存在,说明理由.

查看答案和解析>>

在数列{an}中,a1=1,an+1=1-
1
4an
bn=
2
2an-1
,其中n∈N*

(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an
(2)设cn=
2
n+1
an
,数列{cncn+2}的前n项和为Tn,是否存在正整整m,使得Tn
1
cmcm+1
对于n∈N*恒成立,若存在,求出m的最小值,若不存在,说明理由.

查看答案和解析>>

(2009•湖北模拟)已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1
求证:①对于任意正整数n,都有Tn
1
6
.②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>


同步练习册答案