19.设是定义在上的函数.对任意.恒有. 当时.有. ⑴ 求证:.且当时.,闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

是定义在上的函数,用分点

      

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.

(1)函数上是否为有界变差函数?请说明理由;

(2)设函数上的单调递减函数,证明:上的有界变差函数;

(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

查看答案和解析>>

10.设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是(    )

A.        B.           C.         D.

查看答案和解析>>

是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是(    )

A.B. C.D.

查看答案和解析>>

是定义在上的奇函数,且当时,,若对任意,不等式恒成立,则实数的取值范围是       

 

查看答案和解析>>

是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是(   )

A.                           B.

C.                                D.

 

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷