(理)已知是双曲线的两焦点.以线段为边作正三角形.若的中点在双曲线上.则双曲线的离心率为 ( ) A. B. C. D. (文)已知定点A.B.且.动点P满足.则的最小值是( ) A. B. C. D.5 查看更多

 

题目列表(包括答案和解析)

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线
x2
16
-
y2
9
=1
的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求
AP
BP
的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=
3
3
x是其中的一条渐近线的方程,两条直线X=±
3
2
是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2|
AB
|=5
F1F2
,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=x是其中的一条渐近线的方程,两条直线X=±是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2||=5,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知双曲线S的两个焦点F1、F2在x轴上,它的两条渐近线分别为l1、l2,y=x是其中的一条渐近线的方程,两条直线X=±是双曲线S的准线.
(I)设A、B分别为l1、l2上的动点,且2||=5,求线段AB的中点M的轨迹方程:
(II)已知O是原点,经过点N(0,1)是否存在直线l,使l与双曲线S交于P,E且△POE是以PE为斜边的直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知点P1(x0,y0)为双曲线
x2
3b2
-
y2
b2
=1(b>0,b为常数)
上任意一点,F2为双曲线的右焦点,过P1作右准线的垂线,垂足为A,连接F2A并延长交y轴于点P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)是否存在过点F2的直线l,使直线l与(1)中轨迹在y轴右侧交于R1、R2两不同点,且满足
OR1
OR2
=4b2
,(O为坐标原点),若存在,求直线l的方程;若不存在,请说明理由;
(3)设(1)中轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB、QD分别交y轴于M、N点,求证:以MN为直径的圆恒过两个定点.

查看答案和解析>>


同步练习册答案