题目列表(包括答案和解析)
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且![]()
![]()
(Ⅰ)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且![]()
(Ⅰ)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形?如果存在,求出
的取值范围;否则,请说明理由.
![]()
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)D是过
三点的圆上的点,D到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
设椭圆
的左、右焦点分别为
,
是椭圆上位于
轴上方的动点
(Ⅰ)当
取最小值时,求
点的坐标;
(Ⅱ)在(Ⅰ)的情形下,是否存在以
为直角顶点的内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.
设椭圆
的左、右焦点分别为
,,右顶点为A,上顶点为B.已知
=
.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点
,经过点
的直线
与该圆相切与点M,
=
.求椭圆的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com